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AN INITIAL INVESTIGATION INTO METHODS OF COMPUTING TRANSONIC

AERODYNAMIC SENSITIVITY COEFFICIENTS

I. Introduction
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This final report will attempt to concisely summarize the activities and

accomplishments associated with NASA Grant NAG-I-793. The project started on
July 1, 1987 and officially terminated on December 31, 1994. While the total
funding for the project was $110,395, many lengthy periods existed in which little or
no funds were available for expenditure by the project; and all grant funds were

essentially expended by August 31, 1993. Fortunately, the effort was maintained by
significant financial support by the Aerospace Engineering Department in the form

of Graduate Assistantship funds and faculty salary support and by moral and
technical support from NASA Langley. In spite of these difficulties, significant
accomplishments were achieved by the project; and these are summarized below.

II. Personnel

The individuals who have been associated with the project are as follows:

Leland A. Carlson, Professor of Aerospace Engineering -- Dr. Carlson

served as the principal investigator for the project. At various times, Dr., Carlson
was partially supported by the project.

Hesham M. EI-banna, Graduate Research Assistant and Graduate Assistant

Non-Teaching (GANT) -- Hesham EI-banna joined the project at its inception.
During the project, he earned his Masters' and Ph.D. degrees using research
associated with the project for his thesis and dissertation: Dr. EI-banna was
partially _supported by the project at Various times. He was also extensively

supported by the Aerospace Engineering Department as a GANT.

Alan Arslan -- Graduate Research Assistant Non-Teaching -- Alan Arslan
joined the project in Fall 1992. He was supported by the Aerospace Engineering
Department as a GANT. He used research associated with the project for his
masters' thesis.
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III. Accomplishments

The primary accomplishments of the project are as follows:

1. Using the transonic small perturbation equation as a flowfield model, the
project demonstrated that the quasi-analytical method could be used to obtain

aerodynamic sensitivity coefficients for airfoils at subsonic, transonic, and
supersonic conditions for design variables such as Mach number, airfoil thickness,
maximum camber, angle of attack, and location of maximum camber. The approach
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was validated by comparison to results obtained using the finite difference
technique. It was established that the quasi-analytical approach was an accurate
method for obtaining aerodynamic sensitivity derivatives for airfoils at transonic
conditions and usually more efficient than the finite difference approach. These

initial results were among the first aerodynamic sensitivity results obtained by the

quasi-analytical approach fo[ transonic conditions.

2. The usage of symbolic manipulation sof!war9 to determine the appropriate
expressions and computer coding associated with the quasi-analytical method for

sensitivity derivatives was investigated. Using the three dimensional fully
conservative full potential flowfield model, it was determined that symbolic

manipulation along with a chain rule approach was extremely useful in developing a
combined flowfield and quasi-analytical sensitivity derivative" code capable of

considering a large number of realistic design yaria_l#s ..... Various methods of
solving the resulting large system of quasi-analytical equations were investigated. It
was concluded that for the direct solver approach, that the iterative conjugate

gradient method was accurate, capable of handling a large number of design
variables, and more efficient than the finite difference approach.

3. Using the three dimensional fully conservative full potential flowfield model,

the quasi-analytical method was applied to swept wings (i.e. three dimensional) at
transonic flow conditions. The study included as basic design variables freestream
Mach number, wing angle of attack, airfoil thickness, airfoil camber, !o_tion of
airfoil maximum camber, wing twist angles at four spanwise locations, and the
coordinates of the wing tip. From.sensitivity derivatives for these design variables,
sensitiyities were also_ obtai.ned:for 0ther variablesl of interest such as wing are a,

aspect ratio, wing sweep, and taper ratio. The resultant sensitivity derivative results
were verified by comparison with finite difference computations. Sensitivity
derivatives were obtained chordwise for _)Cp/_)Xo, spanwisefor c3Ci!_)Xo, andove_all

for _)CL/_Xo, where Xo is any design variable. The sensitivity derivatives were also
use to predict pressure distributions and aerodynamic coefficients at conditions
different from those at which the derivatives were obtained. These predicted results

demonstrated that sensitivity derivatives could be used over limited ranges for

predictive purposes. Sensitivity derivatives were also obtained over a range of
Mach numbers ranging from 0.8 up to 1.2 and for a variety of wing airfoil sections.
These results demonstrated the feasibility and usefulness of the quasi-analytical

approach for obtaining aerodynamic sensitivity derivatives about wings. It is
believed that they were among the first sensitivity results to be obtained using the

quasi-analytical method for wings at transonic conditions.

4. The incremental iterative technique has been applied to the three
dimensional transonic nonlinear small perturbation flowfield formulation, an

equivalent plate deflection model, and the associated aerodynamic and structural

discipline sensitivity equations; and coupled aeroelastic results for an aspect ratio
three wing in transonic flow have been obtained. This approach permitted the use
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of finer grids and inclusion of both aerodynamic and structural sensitivity derivatives
with the final results including full aeroelastic coupling. In addition, system
sensitivity derivatives were obtained. Results were obtained for nine aerodynamic

design variables and four structural design variables. The results demonstrated the
usefulness and feasibility of combining the incremental iterative approach with the
quasi-analytical formulation for obtaining both discipline and system sensitivity
derivatives. Again, these are among the first results to utilize the quasi-analytical
approach to obtain aerodynamic-structural coupled sensitivity derivatives and

system sensitivity derivatives. However, it appears that further studies are needed
in methods associated with determining system sensitivities and of utilizing this
information in optimization procedures. This effort is discussed in Section IV below.

IV. Progress in the Last Six Months

During ihe past six months, Arslan and Carlson as part of a pilot study have

applied the incremental iterative technique to the transonic nonlinear small
perturbation formulation, an equivalent plate deflection model, and the associated
discipline sensitivity equations, to obtain coupled aeroelastic results for an AR=3

wing in transonic fow. This integrated approach allows the use of finer grids and
simultaneously yields the aerodynamic and structural deflection solutions, the
aerodynamic _sensitivity derivatives for nine aerodynamic design variables, the
structural sensitivities for four design variables, and the coupling derivatives needed
for the system derivatives, which are computed subsequently. It is outlined in Fig. 1.

I-Sweep flowfield by cross planes]

[Solve flowtield equations for A#tijk]

[Solve aerodynamic sensitivity eqs. for z_(axa-_D,)I

[Solve structural eqs.for ASijk_]

[Solve structural sensitivity eqs. for At" a5 "_-]

[,o,ve.ou°,,.0deriv.,,veeq..,or

[Update aerodynamic and structural boundary conditions]

[Iterateuntil convergence]

I d,_Cp dCL d, etc.]Solve system sensitivity eqs. for dXo ' dX,_'dXo'

Fig. 1 -- Integrated Solution Approach

Basic aerodynamic sensitivities were obtained at all 97x16x16 flowfield points

while aerodynamic coefficient and structural deflection derivatives were computed

4
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at 980 wing surface points, comprising ten half-span stations each having 49 points
on top and 49 on the lower surface. System derivatives were obtained with the
Global System Equation Method 2 (GSE2). Since Sobieski has suggested that
system derivatives can be-obtained usingc0n_ensed;information, system
sensitivities were computed from the fine grid aerodynamic, structures, and

discipline sensitivity results for two condensed cases_ The f!rs!, computed system
sensitivities at eight half-span stations each with 13 chordwise locations and the
second used five half-span stations each with 25 chordwise values. Limiting the

number of system sensitivities is desirable since the coupling derivatives required to

compute them treat each _3 and ACpconsidered in the system formulation as a
design variable. Thus, even for the condensed problem using a 25x5 system grid,
the number of design variables was effectively 138; and 125 lengthy coupling

vectors _)6/i)ACpk and _ACp/i)_3k had to be computed. Obviously, the inclusion of

system sensitivities greatly increases the problem complexity. While results were
representative results for theobtained at each wing station, ......... 97x16x16 flowfield,

49x10 structural, and 25x5 system case are shown On Figl 2. The wing was at

M,_ = 0.82, cz= 2 ° , had 1° of twist (T,_p),add the airfoil sect_on_ yari_d fr_omaNA.CA
2406 at the root to a NACA 1706 at the tip. The deflected wing position is shown

dotted, the c3CJc3Tt_pcurves are for the upper and lower surfaces, and in the two

lower plots the discipline derivatives are dotted while the system sensitivities are
solid. Note that the flow is supercritical, that the wing has significant deflection and

twist due to aerodynamic loading, and the upper surface shock wave strongly
affects the aerodynamic derivatives. Also, note that the system derivative dACp/dTtip

is significantly different from the discipline value near the trailing edge due to twist
induced by aerodynamic-structural coupling, and that d6/dt, where t is a wing
structural thickness parameter, differs in magnitude and sign from the

corresponding discipline result, oqa/i)t.
Unfortunately, comparison of the 13x8 and 25x5 system derivative results

indicates differences in values, magnitudes, and sometimes signs. Since these
sensitivities were obtained from the same fine grid aerodynamic, structural, and

discipline sensitivity solutions and since the differences do not appear to be due to
numerical error, they must be associated with the system derivative solution

approach, the number and location of condensed points considered, etc.

Since accurate system derivatives are required before the optimization portion of

a MDDO process can be applied to transonic wing design, the methodology and
approach for computing system derivatives for a transonic aeroelastic wing needs to
be further investigated. In addition, since the presen-t study utilized a pilot code and
was primary a research investigation of feasibility, further work is needed to develop

an aerodynamics flowfield solver and sensitivity module that is suitable for
engineering applications and studies.

A copy of Mr, Ar_sl_an's_masters' thesis and an abstract of a proposed AIAA
paper, which discuss this effort and include many of the details, will be sent under

separate cover to the project monitor.
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V. Publications and Degrees

The following degrees were earned at Texas A&M University by individuals
associated with this research project:

EI-banna, Hesham M., Master of Science (Aerospace Engineering), May 1988.

EI-banna, Hesham M., Doctor of Philosophy (Aerospace Engineering), August
1992.

Arslan, Alain, Master of Science (Aerospace Engineering), December 1993.

The following publications resulted from research associated with this project:

EI-banna, H. M., "Numerical Computation of Aerodynamic Sensitivity
Coefficients in the Transonic and Supersonic Regimes," Master of Science Thesis,

Aerospace Engineering Department, Texas A&M University, College Station, Texas,

May 1988.

EI-banna, H. M. and Carlson, L. A., "Determination of Aerodynamic Sensitivity
Coefficients in the Transonic and Supersonic Regimes," AIAA Paper 89-0532,

January 1989.

EI-banna, H. M. and Carlson, L. A., "Determination of Aerodynamic Sensitivity
Coefficients Based on the Transonic Small Perturbation Formulation," Jo_.urnal of

Aircraft, Vol. 27, No. 6, June 1990, pp. 507-515.

EI-banna, H. M. and Carlson, L. A., "Determination of Aerodynamic Sensitivity
Coefficients Based on the Three-Dimensional Full Potential Equation," AIAA Paper

92-2671, June 1992.

EI-banna, H. M. and Carlson, L. A., "A Compendium of Transonic Aerodynamic

Sensitivity Coefficient Data," TAMRF Rept. 5802-9203, Texas A&M Research
Foundation, College Station, TX, July 1992.

EI-banna, H. M., "Aerodynamic Sensitivity Analysis in the Transonic Regime,"

Doctor of Philosophy Dissertation, Aerospace Engineering Department, Texas A&M
University, College Stationl Texas, August 1992.

Carlson, L. A. and El-banna, H. M., "Determination of Aerodynamic Sensitivity
Coefficients Based on the Three Dimensional Full Potential Equation: Users Guide

for Analysis/Sensitivity Program and Graphics Program, " Aerospace Engineering

Department, Texas A&M University, College Station, Texas, August 1992.
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Carlson, L. A. and EI-banna, H. M., "Determination of Aerodynamic Sensitivity
Coefficients for Wings in Transonic Flow," Proceedings of the 3rd Pan American
Congress of Applied Mechanics, D. T. Mook, editor, Sao Paulo, Brazil, January

1993, pp. 13-16.

Arslan, A. E. "Analysis and Numerical Computation of Sensitivity Derivatives in

the Transonic Regime," Master of Science Thesis, Aerospace Engineering, Texas
A&M University, College Station, Texas, December 1993.

EI-banna, H. M. and Carlson, L. A., "Aerodynamic Sensitivity Coefficients Using
the 3-D Full Potential Equation," accepted for publication in the Journal of
Aircraft, 1994.

Arslan, A. E. and Carlson, L. A., "Integrated Determination of Sensitivity
Derivatives for an Aeroelastic Transonic Wing," Submitted to the 5th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, September 1994.

Copies of some of these publications are included in the appendix of this report.
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DETERMTNATION OF AERODYNAMIC SENSITIVITY COEFFICIENTS

IN THE TRANSONIC AND SUPERSONIC REGIMES

Hesham M. Elbanna* and Leland A. Carlson _*

Texas A&M University

College Station, Texas 77843

AIAA-89-0532

Abs____tract

The quasi-analytical approach is developed

to compute airfoil aerodynamic sens[tlvity

coefficients in the transonic and supersonic

flight regimes. Initial investigation verifies

the feasibility of this approach as applied to

the transonic small perturbation residual

expression. Results are compared to those

obtained by the direct (finite difference)

In order to improve the design of transonic

vehicles, design codes are being developed which

use optimization techniques; and, in order to be

successful, these codes require aerodynamic

sensitivity eoefficlents, which are defined as

the derivatives of the aerodynamic functions with

respect to the design variables. Obviously, it is _

desirable that such sensitivity coefficients be

approach and both methods are evaluated to -- _asily obtained. Consequently, the primary

determine their computational accuracies and

efficiencles. The quasi-analytical approach is

shown to be superior and worth further

investigation.

Nomenclature

AI, A2 Coordinate stretching constants

C Maximum camber in fraction of chord

Cp Pressure coefficient

IM, JM Grid dimensions

JB Row above airfoil

L Chordwise location of maximum camber

M Mach number

R Residual expression

T Maximum thickness in fraction of

chord

XD Design variable

f, g Cartesian coordinate stretching

functions

x, y Cartesian coordinates

= Angle of attack

7 Ratio of specific heats

F Circulation

Perturbation potential function

ACp CPl - Cpu

Subscripts

Free stream condition

b Body

p Pressure

u, i Upper, lower

TE Trailing edge

%ntroductlon

Over the past few years, computational fluid

dynamics has evolved rapidly as a result of the

immense advancements in the computational field

and the impact of the use of computers on

obtaining numerical solutions to complex

problems. Accordingly, researchers are now

capable of calculating aerodynamic forces on

wing-body-nacelle-empennage configurations

subject to subsonic or transonic flows. A next

logical step would be to compute the sensitivity

of these forces to configuration geometry.

* Graduate Research Asst., Student Member AIAA

** Professor, Aerospace Engr., Assoc. Fellow AIAA

Copyright _ American Institute o[ Aeronautic_ and

Astronautics, Inc., 1989• All rights reserved.

objective of this effort is to investigate the

feasibility of using the quasl-analytica!,

method I-5 for calculating the aerodynamic

sensitivity derivatives in the transonic and

supersonic flight regimes. As part of this work,

the resulting sensitivity coefficients are

compared to those obtained from the finite

difference approach. Finally, both methods are

evaluated to determine their computational

accuracies and effieiencles.

In the transonic regime, a variety of

flowfield solution methods exist. These range

from full Navier-Stokes solvers to transonic

small perturbation equation solvers. The

complexity of the equations that need to be

solved depends upon the flow phenomena in

question and the objective of the analysis. Since

it is not the objective of this work to develop

flowfield algorithms, the present research uses

the nonlinear transonic small perturbation

equation to determine and verify efficient

methods for calculating the aerodynamic

sensitivity derivatives. In addition, only two

dimensional results will be presented in this

initial work.

Backgtotmd

Most recently, sensitivity methodologz has

been successfully used in structural design 2 and

optimization programs 3 primarily to assess the

effects of the variation of various fundamental

properties relative to the important physical

design variables. Moreover, researchers have

developed and applied sensitivity analysis for

analytical model improvement and assessment of

design trends. In most cases, a predominant

contributor to the cost and time in the

optimization procedures is the calculation of

derivatives. For this reason it is desirable in

aerodynamic optimization to have efficient

methods of determining the aerodynamic

sensitivity coefficients and, wherever possible,

to develop appropriate numerical methods for such

computations.

Currently, most methods for calculating

transonic aerodynamic sensitivity coefficients

are based upon the finite difference

approximation to the derivatives. In this

approach, a design variable is perturbed from its

previous value, a new complete solution is

obtained, and the differences between the new and

the old solutions are used to obtain the
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sensitivity coefficients. Thls direct, or brute

force, technique has the disadvantage of being

potentially very computer intensive, especially

if the governing equations are expensive to

solve. Accordingly, the need to eliminate these

costly and repetitive analyses is the primary

mot[vatlon for the development of alternative

efficient computational methods to determine the

aerodynamic sens[tivlty coefficients.

Problem Statement

Based on the foregoing discussion, the

current problem is formulated starting from the

generic quasl-analytlcal approach and manipulated

according to the rules given in Appendix A of

Ref.l for the derivation of the general

sensitivity equation. This general sensitivity

equation Is then applied to the residual

expression (R) of the transonic small

perturbation equation, which is a simple and

adequate description of the nonlinear phenomena

occurring in the transonic reglme. Although this

expression is nonlinear in the perturbation

potential (_), the general sen_Itlvlty equation,

Eq.(1), is linear with respect to the unknown

sensitivity (a_/aXDi). It is to be noticed that

the practical implementation of the above step is

not achieved until the residual expression is

approximated on a finite domain and the

mathematical form of the problem rendered to that

of one in linear algebra. Thls dlscretlzatlon

process is explained in detail in Ref.6.

Thus, the quasi-analytlcal method, as

applied to the residual expression of the

transonic small perturbation equation, yields the

sensitivity equations,

]{a.}__ ._{mR}_
a_ aXD I 8XD I

(1)

where

R " (BI+B2_x) _x + _ - 0 (2)

2
B I - I -M_

B 2 - _ (7+I) M_ 2

- _ (x,y,XD) (3)

XD - set of design variables

XD I -- ith design variable

subject to the airfoil boundary condition,

[dy]_y(Xb,O ) - -- - F(x,XD)
dx b

the infinity boundary condition,

for M_<I

_ - - r0/(2x), e - n_/2. n - 0,I.2,3,4

or for M_>l

_ - 0 , 6 - n_/2, n - 1,2,3

_x - 0 , 8 - n_/2, n - 0,4

(4)

(5)

and the Kutta Condition

AP - 0 (U - A_ -- const.), XTE < x _ _ (6)

Equation (I) is discretlzed into a system of

linear equations to be solved for the unknown

sensitivity vectors. The solution of this system

is obtained efficiently by using either a direct

or an iterative procedure that allows for

multiple right hand sides. This approach is

explained in the following section and has the

advantage that several unknown vectors can be

obtained simultaneously, each vector representing

the sensitivity of the potential (_) with respect

to some design variable XD i.

At this stage, it is convenient to define

the vector of design variables

XD- { XDI. XI)2, . . . , XD n ) (7)

and to exactly determine which variables

influence the solution of Eq.(2). In doing so,

the relation between the sensitivity coefficients

corresponding to these variables add the form of

the optimization algorithm that utilizes this

information needs to be considered. Notice that

the derivatives computed in this study, namely,

the first partial derivatives, are adequate for a

typical optimization routine if it were to be

applied to the present two dimensional problem.

Notice also that some optimization studies might

require higher derivatives.

For the transonic flow problem, an

appropriate choice of the first design variable

is the free stream Mach Number (M_). This

variable appears in the governing Eq.(2)

and has an important Influence on the character

of the equation via its Influence on local Mach

number ( for H<l,the equation is elllptlc, for

M>I, the equation is hyperbolic ) and thus on the

nature of the solution. For this reason, it is

desirable to have M_ as one of the design

variables.

Next, it is appropriate to examine the

boundary condition given by Eq.(5). In the

transonlc small perturbation formulation, the

angle of attack (=) enters the problem through

the boundary condition and thus,

dy ]b-
Fu - -- Yu' - =

I dx I

(8)

For simplicity, the function (F) should be easily

dlfferentiable with respect to the design

variables defining the airfoil geometry. This

desirable feature sfmpllfles the computation of

the right hand side term of the sensitivity

equation. Therefore, it would seem plausible to

have a simple analytical expression for modeling

the upper and lower surfaces of the airfoil.

For the present studies, It was decided to

limit consideration to two basic airfoil

sections, namely parabolic-arc sections, and the

NACA four-dlglt sections, whose families of wing

sections are obtained by combining a mean llne
and a thlckness distributlon 7 . The resultant

expressions possess the necessary features that

suit the problem, mainly the concise description

of the airfoil surfaces in terms of several

geometric design variables. The expressions are

as follows :

_i•_¸



For parabolic-arc sections

c(2Lx-x_)/L 2 ±2Tx(1-x), x__L

Yu'_ 2 2+
I[C[(I-L)+2Lx-x ]/(l-L) _2Tx(l-x) x>L

(9)

For NACA four-digit sections

[c(2Lx-x'_/e 2 ± 5T_O.2969Jx_0.126x

-0.3516x-+O.2843x--O.lO15x ), x_L

Yu_ (10)
I C (I-2L)+2Lx-x 2 /(I-L) 2 + ST(0 2969Jx

-O.126x-O.3516x +0.2843x -0.1015x ), x>L

Each of the quantaties C, L, and T is

expressed as a fraction of the chord (e.g. if T

is 6% chord then T - 0.06). Differentiating

Eqs.(9) and (lO) with respect to x and

substituting the results into Eq.(8) yields :

For parabolic-arc sections

Fu, I - 2C(L-x)/LL ± 2T(l-2x) -

For NACA four-digit sections

(II)

Fu, I - 2C(L-x)/LL ± 5T(O.14845/_x-O.126

2
-0.7032x+O.8529x -0.406x s) - = (12)

where

L 2 , x__L
LL - (13)

[(I-L) 2 , x>L

Eqs.(ll) and (12) are simple analytical

expressions in terms of the four variables T, L,

C, and =. Thus,

XD - { T. M_. =. L. C } (14)

represents the complete set of design variables

that define the present two-dimensional airfoil

sensitivity problem. Notice that these variables

are completely uncoupled and, thus the

sensitivity equation can be solved independently

with respect to each varlahle 8.

Mathematica% Treatment and Solution Procedure

pgohlem Discretization

Equation (i) represents the general

sensitivity equation applied to the residual R.

Now, in order to solve the problem numerically,

Eq.(2) is formulated computatlonally on a finite

domain. This transformation is achieved by using

a stretched Cartesian grid that maps the infinite

physical domain onto a finite computational grid.

In this study, the grid used is based upon a

hyperbolic tangent transformation that places the

outer boundaries at infinity. Accordingly, the

computatlonal variables used are given by.

- tanh A2x (15)

n - tanh AIy (16)

In addition, the stretching functions are

defined as,

2
f - (_/dx) - A2(I-_)

g (dn/dy) AI(I-, )

(17)
(18)

so that,

_x - f_f (19)

_y - g_ (20)

_xx f _f_f)f (21)

_yy g (g_,)n ." (22)

Substituting from Eqs.(19)-(22) into Eq.(2),

yields the transformed residual expression,

R - [Bi+B2f_fl f(f_f)_ + g(g_)_ - 0 (23)

This equation is solved numerleally by an

approximate factorization scheme 9 in which the

objective is to force the residual to zero at

each point of the computational domain. In finite

difference form, Eq.(23) can be written as,

Ri, j - [B I + B2(_i+l,j-_0i-l,j)/(2A_)] fi/A_ _

[vi,jfi+h(_i+l,j-_°i,j)

-(2vl,J-l)f£-h(_i,j-_iillj)

-(l-vl ,j ) fi-3/2 (_i-I, j-_i-2 ,j ) ]

+ [gJ+h(_i,j+l-_i.j)

-gJ-h(_i.J-_i.j-l)] gJ/A" _ (24)

where

Vl, j - i if point (l,j) is subsonic

vi, j - 0 if point (l,J) is supersonic

Eq.(24) is the dlscretlzed form of the residual

at a general point (i,j) in terms of _ values at

surrounding points. Consequently, R at i,j can be

viewed as a function of the _ values at

neighboring points; and, therefore, the

differentiation of the residual expression is

straight forward.

Differentiation of the Residual

Rearranging Eq.(24) yields

Ri, j = Cl_l, j + c2_i+l,j_i-l,j + c3_i+l,j_i,j

+ c4_i-l,j_i,j + cs_i+l,j_i-2,j

2

+ c6_i-l,j_i-2,j + c7_i-l, j + c8_i+l,J

+ C9_l+l,j + clO_i-l, j + Cll_i,j+l

Cl2_i,j_ I + Cl3_i_2,j (25)

For a fixed computational grid, the

coefficients c I, c 2, ... , c13 are functions only

of B I and B 2 which in turn are functions of M_.

This fact is used when differentiating Eq.(25)

with respect to M_ in order to obtain the right

hand side (_R/aM_o). It is also necessary to

consider the treatment of various types of grid

points and examine the effect on the general

residual expression. Several groups of polnts,

such as those adjacent to the airfoil, to the

wake cut, and to infinity boundaries, need

special treatment. Accordingly, it is necessary
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to revise the residual expression at these

boundary points to include the boundary

conditions. The resulting updates are used to

modify the residual equation, Eq.(25), and yield

a set of expressions, each being valid for a

group of boundary points. The details of these

operations are found in Ref.6.

In setting up the complete quasi-analytical

problem the circulation and its dependence upon

trailing edge potentials must be carefully

included. Since the circulation is determined by

the difference in potentials at the trailing

edge,

F - _uTE - _ITE (26)

or, by interpolating the trailing edge values

F - T 1 [ 1.5 (_ITE-I,JB -_ITE-I,JB-I)

- 0.5 (_ITE-I,JB+I-_ITE-I,JB-2) ]

+ T 2 [ 1.5 (_ITE,JB -_ITE,JB-I )

0.5 (_ITE,JB+I -_ITE,JB-2 ) ] (27)

where

T 2 - [ {(x-0.5) - f(ITE-I) ] / Af (28)

T I - [ 1 - T 2 ] (29)

and since a branch cut extends from the trailing

edge to downstream infinity, the trailing edge

potentials appear in the residual expressions for

points along the branch cut. In addition, since

in the two dimensional case the infinity boundary

conditions are proportional to the circulation,

the trailing edge potentials also appear in the

residual expressions at points adjacent to the

outer boundaries. Consequently, the- resultant

matrix (aR/a_), while banded, also contains many

nonzero elements far from the central band.

Notice that the presence of these elements

greatly complicates the rapid and efficient

solution of the sensitivity equation, Eq.(1).

The resulting residual expressions are

differentiated analytically with respect to the

potential (_). To be more specific, each equation

is differentiated with respect to the potential

at neighboring points and trailing edge points

(the later enters as a result of the implicit

nature of the circulation effects). These points

are denoted by the counters (ii,jj) and are given

by,

(i,j-l), (i,j), (i,j+l), (i-2,j), (i-l,j),

(i+l,J), (ITE-I,JB-2), (ITE-I,JB-I), (ITE-

I,JB), (ITE-I,JB+I), (ITE,JB-2), (ITE,JB-I),

(ITE,JB), (ITE,JB+I).

Solution about a Fixed Design Polnt

Once the residual relations are obtained,

the actual coefficients are assembled by

evaluating the appropriate analytical

expresssions using a flowfield solution obtained

from Eq.(2) for a given set of conditions (i.e.

about a fixed design point). Similarly, the right

hand sides are evaluated by differentiating the

analytical expressions for the residual with

respect to each design variable. Again, the

details and results of these steps are found in

Ref.7.

The end result is that the coefficient

matrix (_R i _/O_il _]) is of size (IM-2)*(JM-
2)x(IM-2)*(J_-2) fo_a general (IM*JM) grid. This

system is large, of block structure, diagonally

dominant, and sparse: and, while banded, also

contains many nonzero elements far from the

central band. As a result of this size and

structure, it is obvious that a reasonably fast

scheme for solving Eq.(1) is needed.

Currently, it is very difficult to single

out an optimum routine that handles a general

large sparse system of linear equations for which

the coefficient matrix is unsymmetric. This is

due to the fact that, unlike the theory of

symmetric matrices, the theory of general

unsymmetric matrices is more involved and has yet

to be developed. Since research in the above

areas is currently very active and specialized,

any attempt to cover these topics in detail would

be laborious. For this reason, it was decided to

use a few general approaches that were available

in the literature and that could be integrated

into the sensitivity codes with adjustments. This

approach would allow an evaluation of the overall

cost involved in solving the current two-

dimensional problem and would give a crude

estimate of the effort involved in solving a

three dimensional problem.

The first solver is based on standard

Gaussian Elimination with partial pivoting and

full storage. The second is based on triangular

decomposition I0 and uses a compact storage scheme

that avoldes handling the zero entries and

therefore should be more efficient than standard

Guasslan Elimination. The third solver is based

on a Gauss-Seidel iterative scheme II and was not

optimized for speed (through the choice of

optimum acceleration parameters) but uses sparse

matrix technology in processing only the nonzero

elements. The fourth and last solver used is

based on the conjugate gradient method 12 .

Handling the sparslty pattern for the third and

fourth solvers is achieved by assembling the

symbolic part of the coefficient matrlx only once

for a given grid size and given free-stream

(subsonic versus supersonic). The resultant

structure is then stored on a diskfile. Before

the numerical part is executed, the symbolic

information is read into the code and used

directly to assemble the new matrix. This

procedure is followed in order to reduce the time

consumed in assembling the coefficient matrix.

Notice also that in the Oauss-Seidel and

conjugate-gradient solvers that the error

tolerances for the coefficients involving maximum

thickness, free stream Mach number, and location

of maximum camber were I.E-06 while those on

angle of attack and maximum camber were I.E-04.

Once the sensitivities of the potentials,

and thus the Cp distrlbutlon, to the design

variables are known, the sensitivity of the llft

coefficients to the deslgn variables can be

easily computed. To minimize errors, these

coefficients are computed using

C L - 2 F - 2 (_uTE-_ITE) (30)

and hence,

aCb/aXD i - 2 (a_uTE/@XDi-a_ITE/aXDi) (31)



Finally. all methods_used for computing the

derivatives are compared to the finite-

difference approach and the results are presented

and evaluated to determine the .computational

accuracy and efficiency (with regards to time) of

each method.

Test Cases

In this study, the quasl-analytical method

has been used to determine the aerodynamic

sensitivity coefficients at three freestream

Mach numbers (M_ - 0.2, 0.8, 1.2) for two

arbitrarily selected airfoils, each at one degree

angle of attack. The first is a cambered

parabolic arc section having 1% camber at 40%

chord, a maximum thickness of 6% at 50% chord,

and which is designated P1406: and the second is

a NACA 1406 airfoil. Since most of the

interesting captured phenomena were found to be

identical for both airfoils, only results for the

NACA 1406 airfoil are presented in this paper.

In the following, two types of results will

be presented. The first will be plots of Cp

versus chord for the three chosen Mach numbers.

The second will be the corresponding plots of

(aCp/ST), (SCp/aM_), (SCp/_=), (aCp/aC), and

(aCp/SL) obtained by the quasi-analytical method.

In addition, all of the figures will also contain

results obtained using the direct (finite

difference) approach in which each design

variable was individually perturbed by a small

amount, typically 0.001, and a new flowfleld

solution obtained. Then the sensitivities were

computed using ACp/AXD and are shown via dashed

lines. In many cases the lines are coincident

with the quasl-analytlcal results and cannot be

observed. Table I compares results obtained by

t1_e two methods, and in most cases the agreement

is within one percent.

In all cases, an 81"20 stretched Cartesian

grid was utilized. In addition, for these

studies, the flowfield was normally computed

using double precision arithmetic and the maximum

residual reduced eight orders of magnitude. It

was felt that this level of convergence was

necessary in order to accurately evaluate

sensitivity coefficients using a finite

difference approach, although such convergence

may not be required in the flowfield solver for

the quasl-analytical method.

Results and Discussion

Subsonic Case (M__:____l

Initial studies concentrated on subsonic

cases since at least approximate results would he

known from thin airfoil theory. Figure I shows

the pressure distribution for the NACA 1406

airfoil while Figs.2a and 2b show the sensitivity

of the pressure to thickness for the same

airfoil. As expected from thin airfoil theory,

the upper and lower surface values are

essentially identical and the difference is very

small everywhere. Also shown on the same figure

(and on subsequent figures) by the dashed line is

the result obtained by using the finite

difference approach; and as can be seen, the

agreement betweeen the two approaches is

excellent.

The sensitivity of pressure to fteestream

Hach number is plotted on Ftgs.3a and 3b. It is

noticed that while the profiles for the upper and

lower surfaces are similar, they are not equal In

magnitude, indicating a nonlinear variatlon with

Mach number as predicted by simple Prandtl-

Glauret Theory. However, as indicated by the

results on Fig.3b, the magnitudes for this

subsonic Mach number are very low.

The sensitivity of the pressure coefficients

to angle of attack "arc shown for this case on

Figs.4a and 4b. _s expected from linear thin

airfoil theory, the upper and lower surface

curves are essentially equal in magnitude but of

opposite sign. Not surprisingly, the sensitivity

of the delta Cp variation, Fig.4b, has the shape

of the pressure difference curve for a flat plate

at angle of attack; and its magnitude,

particularly near the leading edge is quite

large.

On Figs. Sa and 5b is plotted the sens[tlvity

of the pressure coefficient to the amount of

maximum camber. Since camber contributes to lift,

it is expected from thin airfoil theory that

these values should be "equal but opposite in

sign _ for the upper and lower surfaces. In

addition, the pressure difference curve has the

correct shape for that associated with a 14 mean

line with the peak occuring at 30% chord 7 and has

magnitude comparable to those for the (8Cp/8=)

cur_'es.

Finally, the sensitivity of pressure to the

location of the maximum camber point is portrayed

on Figs.6a and 6b, and to say the least the

results are interesting. Since maximum camber

location affects the camber profile and hence

llft, the equal and opposite behavior of the

upper and lower surface coefficients is expected.

In addition, the pressure difference sensitivity

is primarily negative forward of the point of

maximum camber and positive aft of it. This

result indicates that if the location of maximum

camber were moved rearward slightly (i.e. a

positive AL) that lift would be decreased on the

forward portion of the airfoil and increased on

the aft portion of the airfoil, which is in

agreement with the results presented in Re[.7.

Transonic Case (_

At M_o - 0.8, the flow about the NACA 1406

airfoil has a strong shock at 40% chord, Fig.7;

and the lower surface is entirely subcritical. As

a consequence, the variation with chord of the

sensitivity coefficients is considerably

different than in the subsonic case.

Figs. Sa and 8b show the sensitivity of

pressure to the maximum thickness; and while the

lower surface profile is similar to thatlobtained

at subsonic conditions, the upper surface curve

and the pressure difference coefficient plot show

the effect of the upper surface shock wave, The

large peak on the curves corresponds to the

location of the shock wave and indicates that the

shock wave location is very sensitive to maximum

thickness. Notice on Figs.8a and 8b the excellent

agreement of the quasi-analytical results

indicated by the solid lines with those obtained

using the finite-differece approach (dashed

lines).

The results for (acp/aM_), which are shown

on Figs.ga and 9b, are similar. The lower surface

curve is typical of a subsonic flow, while the
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upper surface and the pressure difference

coefficients reflect the presence of the upper

surface shock wave. Similar comments can be made

for the remaining design variable coeficients.

which are plotted on Figs.lO, II, and 12.

Examination of the curves In the vicinity of

the shock wave location indicates that the

pressure sensitivity and indirectly the shock

wave location is about equally influenced by the

maximum thickness, freestream Math number, and

angle of attack. However, in comparison it is

relatively insensitive to location of maximum

camber; but, perhaps surprisingly so, the

pressure is twice as sensitive to the amount of

maximum camber as it is to the other design

variables. It should also be noticed that the

llft is most sensitive to angle of attack and to

maximum camber.

In addition, Fig.ll shows a discrepancy

between the results obtained by the direct

approach and those obtained thru the quasi-

analytical method. It will be shown in the

following section that this discrepancy is

related to the choice of the step size used in

computing the finite-difference solution, thus

revealing a significant deficiency in computing

the sensitivity derivatives in nonlinear regimes

via the flnite-difference approach.

Supersonic Case (M-- - 1.2)

In order to investigate the applicability of

the quasi-analytical method at supersonic

freestream Math numbers, solutions were obtained

for the NACA 1406 airfoil at Math 1.2. At this

condition, the flow is transonic in that the how

shock is detached, and there is a region of

subsonic flow extending to approximately the

quarter chord, Fig.13. Figures 14-18 show the

pressure sensitivities for these cases, and Table

I lists the llft sensitivities.

Examination of the plots shows that the

pressure sensitivity coefficients have different

trends and magnitudes from those computed for

subsonic freestream supercritical conditions, and

that they are approaching the form expected from

supersonic linear theory. These changes are

particularly evident in the llft derivatives

presented in Table I. Notice that the derivatives

with respect to the design variables maximum

thickness, Math number, and location of maximum

camber have switched sign. In addition, as

expected from linear theory, the influence of

camber on llft has decreased significantly; and

at M_ - 1.2 is only about 15% of the angle of

attack effect as compared to a factor of about

two at f_0 - 0.8. Notice also that Flg.15 shows a

discrepancy similar to that found in Fig.ll.

Time Comparisons

Obviously, in the development of the quasi-

analytical method it was hoped that not only

would this approach yield accurate values for the

aerodynamic sensitivity coefficients but also

that it would be more efficient than the brute

force finite difference approach. Table II

presents some comparisons concerning the amount

of computational effort required to obtain

solutions by the two approaches.

In comparing the values, several items

should be kept in mind. First, it has been

assumed that the finite difference approach will

require six independent solutions. In practice it

might be possible to start each finite difference

solution from a previous solution and, thus,

decrease the time to convergence. However, to be

accurate, the finite difference approach will

probably require double precision and will have

to be extremely well converged (i.e.l.E-08).

Nevertheless, the values for the finite

difference approach probably should be viewed as

maximum values.

Second, the methods used for obtaining the

sensitivity coefficients have not been optimized

and, as mentioned earlier, may not even be

optimum: and the flowfield solution required for

the quasi-analytical approach may not need double

precision and may not have to be as tightly

converged. Thus the values shown for the quasi-

analytical approach should also be viewed as

maximum values.

In spite of these limitations, results

obtained by direct methods do indicate, that the

quasi-analytlcal method is at transonic

conditions potentially more computatlonally

efficient than the brute force finite difference

approach.

Notice that in this study, the initial guess

used in computing the sensitivity derivatives via

iterative methods was arbitrarily chosen as the

zero-vector. In addition, time comparisons

presented in Table II show that iterative methods

are in general hess efficient than direct methods

if the derivatives for the current two-

dimensional problem were sought about some

general design point. However, if the objective

is to incorporate the sensitivity derivatives in

an optimization loop (i.e. to use the derivatives

in a continuation problem), then, a good initial

guess (which in this case would be available)

would enhance convergence and the overall cost of

computing the derivatives using iterative methods

might be reduced. These points should be taken

into consideration when a sensitivity study is to

he integrated into an optimization procedure.

Additional Test Cases

The first group of cases are carried out to

investigate the performance of the NACA 1406

airfoil for a range of Math numbers from 0.79 to

0.86 in increments of 0.01. As shown in Fig.19,

this range of transonic Math numbers encompasses

the development of the shock wave on the upper

surface of the airfoil. Also, as shown on Figs.20

and 21 for the cases involving thickness, Math

number, and maximum camber, the quasl-analytlcal

derivatives are in the vicinity of the shockwave

frequently different from those obtained by the

finite-dlfference approach. This discrepancy

raises two questions -- What is the cause of the

disagreement and which set of derivatives is more

accurate ? Examination of the variation of the

integrated coefficient, 8CL/aXD i with M_, which

is portrayed on Fig.22, shows that the quasi-

analytical results ere smooth and follow a

definite trend while the finite difference values

are at best "discontinuous". Consequently, it is

concluded that the finite-difference results are

less accurate. In order to observe the

performance of the finite-difference approach in

the transonic regime, it is necessary to examine

the effect of changing the step size (delta of
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the deslgnvariable) on the computed derivatives.

Four different values for the step size (I.E-03,

I.E-04, I.E-05, and I.E-06) were chosen and

applied to the NACA 1406 at a Mach number of

0.84. Examination of the results (Table III) show

that as the step size is decreased, the finite

difference lift coefficient sensitivity

derivatives approach the values computed by the

quasi-analytlcal method. However, in some cases,

for small AXD i values, oscillations in the

pressure coefficient sensitivity derivatives have

been observed depending upon the machine used and

the method of storing and retrieving the data.

These oscillations combined with the difficulty

of properly choosing a suitable finite difference

AXD i a priori indicates that the finite

difference approach is probably not a practical

method of efficiently computing sensitivity

coefficients. On the other hand, the present

results demonstrate that the quasi-analytical

method can be used accurately to obtain such

coefficients in the transonic flight regime.

Conclusion

Based upon these investigations and results,

it is concluded that the quasi-analytical method

is a feasible approach for accurately obtaining

transonic aerodynamic sensitivity coefficients in

two dimensions. The results obtained from the

quasl-analytical method are almost identical to

those obtained by the brute force (finite

difference) technique. Furthermore, the study

indicates that obtaining the quasl-analytical

transonic derlvates using a direct solver is more

efficient than computing the derivatives by the

finite difference method.
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Table I

Accuracy of Quasi-Analytical Method

for Computing

Lift Coefficient Sensitivity Derivatives

NACA 1406, GRID 81520

IXD=II METHOD

T FD

QA

M_ FD

GA

a FD

QA

C FD

OA

L FD

QA

M-=0.2

0.0044

0.0044

O.O471

0.0470

9.9380

9.9381

0.0696

0.0693

M_=0.8

0.5232

0.5447

0.9708

0.9905

10.5229

10.5229

19.5767

18.6154

M_=I .2

-0.2949

-0.3376

1.0235

-0.0703

4.8758

4.8726

0.7695

0.735&

-0.0348

-0.0349

FD Finite-Difference

QA Quasi -Analytical
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Table I!

Time = Comparisons

for Obtaining Sensitivity Coefficients

for Five Design Variables

NACA 1406, GRID 81520

METHOD

FD

TD

GE

GS

CG

M_=O. 2

1.0000

2.5187

2.4089

0.9971

35.2264

M_=0.8

1.0000 1

0.9962

0.9927

1.5410

10.6199

M_=I .2

1.0000

0.3929

0.5165

P1406, GRID 81520

METHOD M_=0.2 M_=0.8 M_=l.2

FD

TD

GE

GS

CG

1.0000

1.8808

1.7891

0.7153

26.3326

l.O000

0.8550

0.9397

1.5526

10.0323

1.0000

0.3930

0.5202

FD Finite-Difference

TD Triangular-Decomposition

GE Gauss-Elimination

GS Guass-Seidel

CG Conjugate-Gradient

" All CPU times were normalized by the

time taken to compute FD derivatives

Table Ill

Effect of Changing Step Size Delta

on Finite Difference

Lift Coefficient Sensitivity Derivatives

NACA 1406, GRID 81520, M_=0.84

DELTA XD_

i .E-03

1 .E-04

I .E-05

XD_=T

7.7603

-0.8493

-0.8497

i .E-06 -0.8498

1 OA ][ -0.8498

XD_=M_

7.8715

-0.6340

-0. 6364

-0.6366

-0.6367

XDa=C

24.0912

83.9853

14.7719

14.7695

14.7692

QA Quasi-Analytical Lift Coefficient
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Determination of Aerodynamic Sensitivity Coefficients

Based on the Transonic Small Perturbation Formulation

m

ltesham M. Elbanna ° and Lcland A. Carlson_-

Texas A&M University, College Station, Texas 77843

The quasiaualytical approach is developed Io compute airfoil aerodynamic sensitivity coefficients in Ihe

Iranso_li¢ and supersonic flight regimes. Initial investigation verifies the [easihillty of Ihis approach as applied

to Ihe transonic small perKurbation residual expression. Results are compared to those obtained by Ihe direct

(finite difference) approach, and both methods are evaluated 1o de(ermine their compulational accuracies and

efficiencies. The quasiaualylical approach is shown (o yield more accurate coefficients and is potenlially more

efficient and worth further investigation.

m

w
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w

C

Cp =
IM ,JM =
JB =

L =

M =

R =
T =

XD =

f,g =

x,y =
_,_ =
Cg

3" =
F =

¢p =

ACp =

Nomenclature

maximum camber in fraction of chord
pressure coefficient

grid dimensions
row above airfoil

chordwise location of maximum camber
Mach number

residual expression

maximum thickness in fraction of chord

design variable

Cartesian coordinate stretching functions
Cartesian coordinates

computational variables

angle of attack

ratio of specific heats
circulation

perturbation potential function

Cp,-Cp.

Subscripts

= freestream condition

b = body

p = pressure
u, ! = upper, lower
TE = trailing edge

Introduction

VER the past few years, computational fluid dynamics
has evolved rapidly as a result of the immense advance-

ments in the computational field and the impact of the use of

computers on obtaining numerical solutions to complex prob-

lems. Accordingly, researchers are now capable of calculating

aerodynamic forces on wing-body-nacdle-empennageconfig_
urations. A next logical step would be to compute the sensitiv-
ity of these forces to configuration geometry.

In order to improve the design of transonic vehicles, design

codes are being developed that use optimization techniques;
and, in order to be successful, these codes require aerodynamic
sensitivity coefficients, which are defined as the derivatives of

the aerodynamic functions with respect to the design variables.

Presented as Paper 89-0532 at the AIAA 27th Aerospace Sciences

Meeting, Reno, NV, Jan. 9-12; received Marcia 15, 1989; revision

received Oct. 2, 1989. Copyright © 1989 by the American Institute of

Aeronautics and Astronautics, inc. All tights reserved.

"Graduate Research Assista_(. Studcn! Member AIAA.

1Professor, Aerospace I:.nginecring. AsstKiatc tVcllow AIAA.

Obviously, it is desirable that such sensitivity coefficients be

easily obtained. Consequently, the primary objective of this
effort is to investigate the feasibility, of using the quasi-

analytical method t-_ for calculating the aerodynamic sensitiv-

ity derivatives in the transonic and supersonic flight regimes.
As part of this work, the resulting sensitivity coefficients are

compared to those obtained from the finite difference ap-
proach. Finally, both methods are evaluated to determine their
computational accuracies and efficiencies.

In the transonic regime, a variety of flowfield solution meth-

ods exist. These range from full Navier-Stokes solvers to tran-

sonic small perturbation equation solvers. The complexity of
the equations that need to be solved depends upon the flow

phenomena in question and the objective of the analysis. Since

it is not the objective of this work to develop flowfield algo-
rithms, the present research uses the nonlinear transonic small

perturbation equation to determine and verify efficient meth-

ods for calculating the aerodynamic sensitivity derivatives. In
addition, only two-dimensional results will be presented in this
initial work.

Background

Most recently, sensitivity methodology has been successfully

used in structuraI design _ and optimization programs _ primar-
ily to assess the effects of the variation of various fundamental

properties relative to the important physical design variables.

Moreover, researchers have developed and applied sensitivity
analysis for analytical model improvement and assessment of
design trends. In most cases, a predominant contributor to the
cost and time in the optimization procedures is the calcula-

tion of derivatives. For this reason, it is desirable in aero-

dynamic optimization to have efficient methods of determin-

ing the aerodynamic sensitivity coefflcients and, wherever pos-
I sible, to develop appropriate numerical methods for such

computations.

Currently, most methods for calculating transonic aero-
dynamic sensitivity coefficients are based upon the finite dif-

ference approximation to the derivatives. In this approach, a

• design variable is perturbed from its previous value, a new
complete solution is obtained, and the differences between the

new and the old solutions are used to obtain the sensitivity
coefficients. This direct, or brute force, technique has the
disadvantage of being potentially very computer intensive, es-

pecially if the governing equations are expensive to solve. In

addition, it is difficult to guarantee the accuracy of the deriva-

tives obtained by the finite difference method. Accordingly,

the need to eliminate these cosily and repetitive analyses is the
primary motivation for the dcvelopmem of ahernalive, cffi

cleat computalional methods to determine the aerodynamic
sensitivity coefficients_
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Problem Statement

..... Based on the. foregoing dis_ sslod_ tliit- current problem is
-"_'_= formulated starting from the generic quasianalytical approach

and manipulated according to the rules given in Appendix A of

Ref. 1 for the derivation of the general sensitivity equation.
This general sensitivity equation is then applied to the residual

expression R of the transonic small perturbation equation,

which is a simple and adequate description of the nonlinear

phenomena occurring in the transonic regime. Although this

expression is nonlinear in the perturbation potential _, the

general sensitivity equation, Eq. (I)., is linear with respect to
the unknown sensitivity (c_o/aXDi). It is to be noticed that the

practical implementation of the above step is not achieved

until the residual expression is approximated on a finite do-

main and the mathematical form of the problem rendered to

that of one in linear algebra. This discretization process is

explained in detail in Ref. 4.
Thus, the quasianalytical method, as _plied to the residual

expression of the transonic small perturbation equation, yields
the sensitivity equations,

=- (l)

where

R -_(Bt+ Bz_ox)_O= + _oyy=0

Bi = l -M_.

B_ = --(3,+ I)M_

(2)

_o _ _o(x,y,XD) (3)

XD =- set of design variables

XDi ==-ith design variable

subject to the airfoil boundary condition,

_Y(Xb'O)=[d'-d-xl b _F(x.XD)

the infinity boundary condition, for M., < !

(4)

So_ = -P0/(2rr), O = n_12, n = 0,I,2,3,4

or for M, > 1

_o_ = O, 8 = n_rl2, n = 1,2,3

@= = 0, 0 = n_/2, n = 0,4 (5)

and the Kutta condition

AP = 0 (F = A¢ = const), Xre <x <_oo (6)

Equation (I) is discrctized into a system of linear equations

to be solved for the unknown sensitivity vectors. In carrying

out this step, the expressions for both the right side vector and
the left side matrix are generated analytically. The solution of

this system is obtained efficiently by using either a direct or an

iterativc procedure that allows for multiple right sides.This
approach is explained in the following section and has the

advantage that several unknown vectors can be obtained si-

multaneously, each vector represcating the sensitivity of the
potential ,p with respect to some design variable XD_.

At this stage, it is convenient to define the vector of design
variables

XD : [XD,. XD, .... XD,,I (7}

and to exactly determine which variables influence the solution

of Eq. (2). In doing so, the relation between the sensitivity
coefficients corresponding to these variables and the form of

the optimization algorithm that utilizes this information needs

to be considered. Notice that the derivatives computed in this

study, namely, the first partial derivatives, are adequate for a
typical optimization routine if it were to be applied to the

present two-dimensional p/'oblem. Notice also that some opti-
mization studies might require higher derivatives.

For the transonic flow problem, an appropriate choice of

the first design variable is the freestream Mach number (M_.).
This variable appears in the governing Eq. (2) and has an

important influence on the character of the equation via its

influence on local Mach number (for M < I, the equation is
elliptic, for M > 1, the equation is hyperbolic) and thus on the

nature of the solution. For this reason, it is desirable to have

M, as one of the design variables.

Next, it is appropriate to examine the boundary condition

given by Eq. (4). In the transonic small perturbation formula-

tion, the angle of attack (e_) enters the problem through the

boundary condition and thus,

F.=[d_x], _=Y_-a, (8)

For simplicity, the function F should be easily differentiable
with respect to the design variables defining the airfoil geom-- ]

etry. This desirable feature simplifies the computation of the
right side term of the sensitivity equation. Therefore, it would
seem plausible to have a simple analytical expression for mod-

eling the upper and lower surfaces of the airfoil.
For the present studies, it was decided to limit consideration

to one basic airfoil section, namely the NACA four-digit sec-

tion, whose families of wing sections are obtained by com-
bining a mean line and a thickness distribution. _The resultant

expressions possess the necessary features that suit the prob-
lem, mainly the concise description of the airfoil surfaces in
terms of several geometric design variables. The expressions
are as follows:

"C(2Lx - x_)/L _ + 5 T(0.2969_x - 0.126x

-0.3516x_ +O.2843xJ-O.lOI5x_), x < L

Y"=, C[(I-2L)+ 2Lx-xZ]/(I-L) _ (9)

5 T(0.2969v_x - 0.126x - 0.3516x:

+0.2843x_-0.1015x4), x>L

Each of the quantities C, L, and Tis expressed as a fraction

of the chord. Differentiating Eq. (9) with respect to x and

substituting the result into Eq. (8) yields

F_.t = 2C(L - x)/LL ± 5 T(0.14845/_ - 0. i 26

- 0.7032x + 0.8529x _ -0.406x _) - c_ (10)

where

_L _, x -< L
LL = (.(I_L)_ ' x>L (11)

Eq. (I0) is a simple analytical expression in terms oi: the four

variables T, L, C, and o_. Thus,

XD = IT, M,, e_, L, C] (12)

represents the complete set of design variables that define the
present two-dimensional airfoil sensitivity problem_ Nolice

that these variables are completely uncoupled; arid, thus, the

set_sitivity equation can be solved indcpendt:ntly wilh rcspecl
to cacl_ variable, t'
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Mathematical Treatment and Solution Procedure

Problem Discretization

-- Equation (!) represents the general sensitivity equation ap-

plied to tile residual R. Now, in order to solve the problem

numerically, Eq. (2) is formulated computationally on a finite

domain. This transformation is achieved by using a stretched

i Cartesian grid that maps the infinite physical domain onto a

finite computational grid. in this study, the grid used is based

upon a hyperbolic tangent transformation that places the outer

boundaries at infinity. Accordingly, the transformed residual

expression is given by

R =- [Bt + Bzf¢tlf(fsoOt + g(gso,), = 0 03)

This equation is solved numerically by an approximate factor-

ization scheme. _ in finite-difference form, Eq. (13) can be
written as

x [_uZ * '/,(*, +_.J - *u) - (2_._ - l)j__ _,(_._ -,__,.A

i - ( I - _,.i)J)- _, _(so_- tj - ¢'i - _.i) ]

+ [gj,,_(so_./÷t-_%)-g_-z(_,_j-sou-,)]g/,a,_ _ (14)

where

i

v_.i = 1 if point (i,j) is subsonic

Pi.j = 0 if point (i,j) is supersonic

Eq. (14) is the discretized form of the residual at a general

point (i,j) in terms of ,# values at surrounding points. Conse-

quently, R at i,j can be viewed as a function of the so values at

neighboring points; and, therefore, the differentiation of the

residual expression is straightforward.

Differentiation of Ihe Residual

Rearranging Eq. (14) yields

or, by interpolating the trailing-edge values

F = T_ [ 1.5(,_hre - t.sn --gtre- t.sn- i)

- O. 5(,,Pity. - i.sn • t - spire - ,.ss- 2)]

+ 7"2[ I. 5(_rE.ss -- _Otte.s_--" t)

(17)

where

T_ : [,_(x : 0.5) - _(ITE - l)]/A_ (18)

7", = [1 - T=I 09)

and since a branch cut extends from the trailing edge to down-

stream infinity, and trailing-edge potentials appear in the

residual expressions for points along the branch cut. In addi-

tion, since in the two-dimensional case the infinity boundary

conditions are proportional to the circulation, the trailing-edge

potentials also appear in the residual expressions at points

adjacent to the outer boundaries. Consequently, the resultant

matrix (aR/Oso), while banded, also contains many nonzero

elements far from the central band. Notice that the presence of

these elements greatly complicates the rapid and efficient solu-

tion of the sensitivity equation, Eq. (i).

The resulting residual expressions are differentiated analyti-

cally with respect to the potential so. Specifically, each equa-

tion is differentiated with respect to the potential at neighbor-

ing points and trailing-edge points. The latter enter as a r_sult

of the implicit nature of the circulation effects. These points

are denoted by the counters (it,j j) and are given by

(i,j - l), (i,j), (i,j + I), (i --2,j), (i - l,j), (i + I,j)

(ITE- I,JB -2), (ITE- I,JB - I), (ITE- i,JB)

(ITE- I,JB + 1), (ITE,JB-2), (ITE,JB - 1)

(ITE,JB), (ITE,JB + 1)

i

i

i

Ri.j = Cl_.j + c2soi+ I.j_i-i.j + c3soi+ i.jsoi.j + C,t_oi-Lj_Pi.j

+ CSsoi+ I.j_i-2.j + C6_°i-I,j_i-2.j + CT_°i-I.j 2 + C8soi¢. Ij 2

+ Cg&Oi+ I.j + Clo_°i - I.j + CI I soi.j +1 + CI2soi.j-I + C l3soi-2../

05)

The coefficients c_,c2,...,ct_ are functions only of the

stretching factors and of Bt and Bz, which are functions of

M**. This fact is used when differentiating Eq. (15) with re-

spect to M= in order to obtain the right side (aR/OM**). It is

also necessary to consider the treatment of various types of

grid points and examine the effect on the general residual

expression. Several groups of points, such as those adjacent to

the airfoil, to the wake cut, and to infinity boundaries, need

special treatment. Accordingly, it is necessary to revise the

residual expression at these boundary points to include the

boundary conditions. The resulting updates are then used to

modify the residual equation, Eq. (15), and to yield a set of

expressions, each being valid for a group of boundary points.

The details of these operations and the expressions for the

coefficients Cl-Ct_ are found in Ref. 4.

In setting up the complete quasianalytical problem, ihc cir-

culation and its dependence upon trailing-edge potentials must

be carefully included. Since the circulation is determined by

the difference in potentials at the trailing edge,

1" = _ _:-- ¢_rr (16)

Solution about a Fixed Design Point

Once the residual relations are obtained, the actual coeffi-

cients are assembled by evaluating the appropriate analytical

expressions using a flowfield solution obtained from Eq. (2)

for a given set of conditions (i.e., about a fixed design point).

Similarly, the right sides are evaluated by differentiating the

analytical expressions for the residual with respect to each

design variable. Again, the details and results of these steps are
found in Ref. 4.

The end result is that the coefficient matrix (aR_.i/3¢,.)i) is

of size (IM-2)x(JM--2)x(IM-2)x(JM-2) for a general

(IM x JM) grid. This system is large, of block structure, diag-

onally dominant, and sparse and, while banded, also contains

many nonzero elements far from the central band. As a result

of this size and structure, it is obvious that a reasonably fast

scheme for solving Eq. (I) is needed.

Currently, it is very difficult to single out an optimum rou-

tine that handles a general, large, sparse system of linear equa-

tions for which lhe coefficient matrix is unsymmetric. This is

because, unlike the theory of symmetric matrices, the theory of

general unsymmetric matrices is more involved and has yet to

be developed. Since research in the above areas is currently

very active and specialized, any attempt to cover these topics

in detail would be laborious. For this reason, it was decided to

use a few general but not necessarily the most efficict_t ap-
proaches that were available in the literature and that could bc

integrated into the sensitivity codes with adjustments. This

approach would allow an evaluation of the overall co_ in-

volved in solving the current two-dinwn_ional prohl_.m.
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The first solver is based on standard Gaussian elimination

with partial pivoting and full storage. The second is based on
triangular decomposition 8 and uses a compact storage scheme

that avoids handling the zero entries and therefore should be
more efficient than standard Gaussian elimination. The third
solver is based on a Gauss-Seidel iterative scheme 9 and was not

optimized for speed (through the choice of optimum accelera-

tion parameters) but uses sparse matrix technology in proces-
sing only the nonzero elements. The fourth and last solver used
is based on the conjugate gradient method. '° Handling the

sparsity pattern for the third and fourth solvers is achieved by

assembling the symbolic part of the coefficient matrix only
once for a given grid size and given freestream (subsonic vs
supersonic). The resultant structure is then stored on a disk
file. Before the numerical part is executed, the symbolic infor-

mation is read into the Code and used directly to assemble the

new matrix. This procedure is followed to reduce the time

consumed in assembling the coefficient matrix. Notice also
that in the Gauss-Seidel and conjugate-gradient solvers that

the error tolerances for the coefficients involving maximum

thickness, freestream Mach number, and location of maxi-
mum camber Were 1.E-06, while those on angle of attack and

maximum camber were I.E-04.
Once the sensltivitles of the potentials, and thus the Cp

distribution, to the design variables are known, the sensitivity

of the lift coefficients to the design variables can be easily

computed. To minimize errors, these coefficients are com-

puted using

C L = 2F = 2(_OuTF..- CITE) (20)

and hence,

act. 18 XDi = 2(c_,p,rE/a XDi - a_PITE/c3XDi) (2 !)

Finally, all methods used for computing the derivatives are

compared to the finite-difference approach, and the results are

Table I Accuracy of quasianalytlcal method

for computing lift coefficient sensitivity derivatives

[or NACA i406, GRID 81 × 20

XD_ Method a Mo, =0.2 Mo, =0.8 M_= 1.2

T FD 0.0044 0.5232 -0.2949

QA 0.0044 0.5447 -0.3376

Moo FD 0.0471 0.9708 1.0235
QA 0.0470 0.9905 -0.0703

c_ FD 6.1385 10.5229 4.8758

QA 6.1386 10.5229 4.8726

C FD 9.9380 19.5767 0.7695
QA 9.9381 18.6154 0.7356

L FD 0.0696 0.1499 - 0.0348

QA 0.0693 0.1496 - 0.0349

'FD. finite difference. QA. quasianalytical.
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presented and evaluated to determine the computational accu-

racy and efficiency of each method.

Test Cases

In this study, the quasianalytical method has been used to

determine the aerodynamic sensitivity coefficients at two
freestream Mach number_ (M, = 0.2, 0.8) for the NACA 1406

airfoil at l-deg angle of attack. Results were also obtained 4.11

for a supersonic case at M, = 1.2. Notice that further studies
are needed to examine the results for a wider range of design

parameter variation.

In the following, two types of results will be presented.

The first will be plots of Cp vs chord for the three cho-

sen Mach numbers. The second will be the corresponding
plots of (aCp/3T), (3Cp/3M,), (3Cp/3c0, (3Cp/OC), and
(aCp/aL) for the upper and lower surfaces and plots of

(aACp/aT) ..... etc., involving the difference, all will be ob-

tained by the quasianalytical method. In addition, all of the

figures will also contain results obtained using the direct (finite

difference) approach in which each design variable was indi-

vidually perturbed by a small amount, typically 0.001, and a
new flowfield solution obtained. Then the sensitivities were

computed using ACp/AXD and are shown via dashed lines. In

many cases, the lines are coincident with the quasianalytical
results and cannot be observed. Table 1 compares results ob-

tained by the two methods, and in mosi cases the agreement is
within 1%.

In all cases, an 81 × 20 stretched Cartesian grid was utilized.

While finer grid studies are needed, they were not performed
as part of this initial study. In addition, for these studies, the

flowfield was normally computed using double precision arith-
metic and the maximum residual reduced eight orders of mag-

nitude. It was felt that this level of convergence was necessary

in order to accurately evaluate sensitivity coefficients using a
finite-difference approach, although such convergence may

not be required in the flow field solver for the quasi-analytical
method.
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airfoil theory, the upper and lower surface values are essen-

tially identical, and the difference is very small everywhere.

Also shown on the same figure (and on subsequent figures) by

the dashed line is the result obtained by using the finite-differ-

ence approach; and as can be seen, the agreement between the

two approaches is excellent.

The sensitivity of pressure to freestream Mach number is

plotted on Figs. 3a and 3b. It is noticed that while the profiles

for the upper and lower surfaces are similar, they are not equal

in magnitude, indicating a nonlinear variation with Mach

number as predicted by simple PrandtI-Glauert theory. How-

ever, as indicated by the results plotted on Fig. 3b, the magni-

tudes for this subsonic Mach number are very low.

The sensitivity of the pressure coefficients to angle of attack

are depicted for this case in Figs. 4a and 4b. As expected from

linear thin airfoil theory, the upper and lower surface curves

are essentially equal in magnitude but of opposite sign. Not

surprisingly, the sensitivity of the delta Cp variation, Fig. 4b,

has the shape of the pressure difference curve for a flat plate

at angle of attack; and its magnitude, particularly near the

leading edge, is quite large.

On Figs. 5a and 5b is plotted the sensitivity of the pressure

coefficient to the amount of maximum camber. Since camber

contributes to lift, it is expected from the thin airfoil theory

that these values should be "equal but opposite in sign" for

the upper and lower surfaces. In addition, the pressure differ-

ence curve has the correct shape for that associated with a 14

mean line with the peak occurring at 30°10 chord s and has a

magnitude comparable to those for the (OCp/O_) curves.

Finally, the sensitivity of pressure to the location of the

maximum camber point is portrayed in Figs. 6a and 6b and, to

say the least, the results are interesting. Since maximum cam-

ber location affects the camber profile and hence lift, the equal

and opposite behavior of the upper and lower surface coeffi-

= ,

;5=-

U

Subsonic Case- Af_ =0.2

Initi;d studies concenlrated on subsonic cases since at least

approximate resvhs would be known from thin airfoil theory, s

Figure I shows the pressure distribution for the NACA 1406

airfoil, while Figs_ 2a and 2t) show the sensitivity of tim pres-

sure to thickness for the same airfoil. As expected from thin

cients is expected. In addition, the pressure difference sensitiv-

hy is prima(ily negative forward of lhe poim of maximum

camber and positive aft of it. This result indicates that if the

location of maximum camber wcre moved rearward slightly
(i.e., a positive A/.), (ha(lif) would be dccreascd on the for-

ward portion of lhc airfoil and increased on _hc afl I>orlion of
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the aid'oil, which is in agreement with the results presented in

Ref. 5.

Transonic Case - m. = 0.8

At M.=0.8, the flow about the NACA 1406 airfoil has a

strong shock at 40% chord, see Fig. 7, and the lower surface

is entirely subcritical. As a consequence, the variation with

chord of the sensitivity coefficients is considerably different

than in the subsonic case.

Figs. 8a and 8b show the sensitivity of pressure to|he max-

imum thickness; and while the |ower surface profile is simi-

lar to that obtained at subsonic conditions, the upper surface

curve and the pressure difference coefficient plot show the

effect of the tipper surface shock wave. The large peak on the

curves corresponds to the location of the shock wave and

indicates that the shock-wave location is very sensitive to max-

imum thickness. Notice on Figs• 8a and 8b the excellent agree-

men| of the quasianalytical results indicated by the solid lines

with those ol,taiucd ngitl.t_ the fini!e-difference approach

(dashed lines)_
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The results for (3Cp/3M,), which are shown on Figs. 9a

and 9b, are similar. The lower surface curve is typical of a

subsonic flow, whereas the upper surface and the pressure

difference coefficients reflect the presence of the upper surface

shock wave• Similar comments can be made for the remaining

design variable coefficients, which are plotted on Figs. 10, I l,

and 12.

Examination of the curves in the vicinity of the shock wave

location indicates that the pressure sensitivity and indirectly

the shock w_ive |ocation is about equally influenced by the

maximum thickness, freestream Mach number, and angle of

attack. However, in comparison it is relatively insensitive to

the location of maximum camber; but, perhaps surprisingly

so, the pressure is twice as sensitive to the amount of maximum

camber as it is to the other design variables. It should also be

noticed that the lift is most sensitive to angle of attack and to

maximum camber.

In addition, Fig. I I shows a discrepancy between the results

obtained by the direct approach and those obtained through

the quasianalytical method. It will be shown in the follow-

ing section that this discrepancy is related to the'choice of the

step size used in computingthefinite2dift_erence solution, ihus,

revealing a significant deficiency in computing the sensitiv-

ity derivatives in nonlinear regimes via the finite-difference

approach.

Time Comparisons

Obviously, in the development of the quasianalytical

method, it was hoped that not only would this approach yield

accurate values for the aerodynamic sensitivity coefficients,

but also that it would bc more efficient than the brute-force,

finite-difference approach. Table 2 presents some comparisons

concerning the amount of computational effort required to

obtain solutions by the two approaches including results for

the supersonic case. 4it

In comparing the values, several items should be kept in

mind. First, it has bccn assumed that the finite-difference ap-

proach will require six independent solutions. In practice, it

mi_giit Be possihlc to sl;.Ul czlch finite dlfferencc solution from
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a previous solution and, thus, decrease the time to conver-

gence. However, to be accurate, the finite-difference approach

will probably require double precision and will have to be

extremely well converged (i.e., I.E-08). Nevertheless, the val-

ues for the finite-difference approach probably should be

viewed as maximum values.

Second, the methods used for obtaining the sensitivity coef-

ficients have not been optimized and, as mentioned earlier,

may not even be optimum; and the flowfield solution required

for the quasianalytical apl:iroach may not need double preci-

sion and may not have to be as tightly converged. Thus, the

values shown for the quasianalytical approach should also be

viewed as maximum values.

in spite of these limitations, results obtained by direct meth-

ods do indicate that the quasianalytical method is more com-

putationally efficient at supersonic conditions and potentially

efficient at transonic conditions than the brute-force, finite-

difference approach.

Notice that in this study, the initial guess used in computing

the sensitivity derivatives via iterative methods was arbitrarily

chosen as the zero vector. In addition, time comparisons pre-

sented in Fable 2 show that iteraxive methods are in general less

efficient than direct methods if the derivatives for the current

two-dimensional problem were sought about some general de-

sign point. However, if the objective is to incorporate the

sensitivity derivatives into an optimization loop (i.e., to use the

derivatives in a continuation problem), then, a good initial

guess (which in that case would be available) would enhance

convergence, and the overall cost of computing the derivatives

using iterative methods might be reduced. These points should

be taken into consideration when a sensitivity study.is to be

integrated into an optimization procedure.

Addilional Test Cases

The first group of cases are carried out to investigate the

performance of the NACA 1406 airfoil for a range of Math

numbers from 0.79 to 0.86 in increments of 0.01. As shown in

Fig. 13, this range of transonic Math numbers encompasses

the development of the shock wave on the upper surface of the

airfoil. Also, as shown on Figs. 14 and 15 for the cases involv-

ing thickness, Mach nt, mber, and maximum camber, the

quasianalytica[ derivatives are in the vicinity of the shock wave

frequeutly different from those obtained by the finite-differ-

ence approach. This discrepancy raises two questhms--what is

i •



Table 2 Time* comparisons for oblain|ng
sensitivity coefficients for five design variables

for NACA 1406, GRID 81x20

Method b M. = 0.2 M. = 0.8 M. = 1.2 -oJ

FD 1.0000 1.0000 ! .0000

TD 2.5187 0.9962 0.3929

GE 2_4089 0.9927 0.5165
GS 0.9971 1.5410 --

CG 35.2264 10.6199

"All CPU times were normalized by the time taken 1o com-

pute FD derivatives.

_FD. finite difference; TD. triangular decomposition;

GE, Gauss elimination; GS, Gauss-Seidel; CG, conjugate

gradient.

Table 3 Effect of changing step size delta on

finite-difference lift coefficient sensitivity derivatives

for NACA 1406, GRID 81 x20, M,.=0.84

Delta XDi XDi = T XDi = M** XDi = C

I.E-03 7.7603 7.8715 24.0912

I.E-04 -0.8493 -0.6340 83.9853

I.E-05 -0.8497 -0.6364 14.7719

I .E-06 - 0.8498 -0.6366 14.7695

QA _ -0.8498 -0.6367 14.7692

'QA. quasianalytical lift coefficient sensitivity derivatives.
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the cause of the disagreement and which set of derivatives is

more accurate? Examination of the variation of the integrated

coefficient, OCL/OXD, with M_, which is portrayed on Fig.
16, shows that the quasianalytical results are smooth and fol-

low a definite trend, whereas the finite-difference values are at

best "discontinuous." Consequently, it is concluded thai the

finite-difference results are less accurate.

in order to observe the performance of the finite-difference

approach in the transonic regime, it is necessary to examine the

effect of changing the stcp size (delta of the design variable) on

the computed dcrivativcs. Four different values for the step

size (I.t5-03, l.ff-04. 1.I--.-05, attd I.E-06) were chosen anti

applied to the NACA 1406 afa_[_number Of 0.84. Exam:

ination of this second group of results (see Table 3) show that

as the step size is decreased, the finite-difference lift coefficient

sensitivity derivatives approach the values computed by tlic

quasianalytiCal metl_od. Hole-vet, in some cases, for small

AXD, values, oscillations in the pressure coefficient sensitivity

derivatives have been observed depending upon the machine

used and the mcthod of storing and retrieving the data. These

oscillations combitted with the difficulty of properly choosing
a suitable finite-difference AXD, a priori indicates that the

finite-difference approach is probably not a practical tnethod

of officio,fly compttting sensilivily coefGcients. Oa [he other
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DETERMINATION OF AERODYNAMIC SENSITIVITY COEFFICIENTS
BASED ON THE THREE-DIMENSIONAL FULL POTENTIAL EQUATION

Abstract

Hesham M. Elbanna" and Leland A. Carlson"
Texas A _ M University

College Station, Texas 77843

The quasianalytical approach is applied to the
three-dimensional full potential equation to com-

pute wing aerodynamic sensitivity coefficients in
the transonic regime. Symbolic manipulation is

used to reduce the effort associated with obtain-

ing the sensitivity equations, and the large sen-
sitivity system is solved using "state of the art"
routines. Results are compared to those obtained

by the direct finite difference approach and both
methods are evaluated to determine their compu-

tational accuracy and efficiency. The quasianalyt-

ical approach is shown to be accurate and efficient

for large aerodynamic systems.

C Maximum camber in fraction of chord

CO Conjugate gradient
CI Local lift coefficient

CL Total lift coefficient

Cp Pressure coefficient

c(y) Chord function
FD Finite difference
GMRESGeneralized minimum residual

L Chordwise location of maximum camber

M Local Mach number Mi,i,k.

Mc Cutoff Mach number 0.94 < Mc <_1.0

Moo Freestream Mach number
poo Freestream pressure, nondimensionalized

by [2.7/(.7 + l)]P0

P0 Stagnation pressure

QA Quasianalytical
qoo Freestream velocity, nondimensionalized

by V"
T Maximum thickness in fraction of chord

TL.._ Twist angles

U,V,W Contravariant velocity components

V" Critical speed

x,y,z Physical grid system
X,Y,Z Computational coordinates

' Graduate Research Asst.
"" Professor, Aerospace Engr., Associate Fellow AIAA
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xle(y)

XLT

XTT

YT

XD

p

p_

pO

_0
V

"7
¢

r

Leading edge function
X-Coordinate of leading edge corner point

X-Coordinate of trailing edge corner point

Y-Coordinate of wing tip

Vector of design variables

Density, nondimensionalized by p0
Freestream density, nondimensionaiized

by p0
Stagnation density
Retarded density coefficient
First order backward difference operator

Switching function

Angle of attack
Ratio of specific heats

Reduced potential function

Full potential function
Circulation

Introduction

To design transonic vehicles using optimiza-

tion techniques requires aerodynamic sensitivity
coefficients, which are defined as the derivatives

of the aerodynamic functions with respect to the

design variables. In most cases, the main con-
tributor to the optimization effort is the calcu-

lation of these derivatives; and, thus, it is de-

sirable to have numerical methods which easily,

efficiently, and accurately determine these coeffi-
cients for large complex problems. At present _-6,

there are two primary approaches for calculating

transonic aerodynamic sensitivity derivatives. In

the first approach, the sensitivities are calculated

by perturbing a design variable from its previous
value, a new complete solution is obtained, and the
differences between the new and the old solutions

are used to obtain the sensitivity derivatives. This

brute force direct technique is computer intensive

for complex governing equations that include a

large number of design variables. In the second

approach, termed the quasianalytical method, the
sensitivities are obtained by solving a large sparse

system of algebraic sensitivity equations in which
the :lacobian matrix and right-hand-side vectors

are obtained by differentiating the discretized form

of the governing equations. The differentiations,

while being staightforward in principle, are usually

lengthy and tedious, ttowever, once obtained, the
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sensitivity equations can be very efficientand ac-

curate for computing large numbers of sensitivity

coefficients.

In the first phase of this research 3, the quasi-

analytical approach was developed and applied

to two-dimensional airfoils. Based upon these

proof-of-concept investigations, it was concluded

that the quasianalytical method was a feasible ap-

proach for accurately obtaining transonic aerody-

namic sensitivity derivatives in two dimensions,

and was often more accurate and emcient than

the finite difference method as the number of de-

sign variables was increased. Further, the alge-

braic forms of the matrix elements in the two-

dimensional sensitivity equations were determined

by hand, which involved extensive effort associated

with differentiating the discretised residual with

respect to the various design variables and the de-

pendent unknowns. Today, such operations could

be carried out using Symbolic Manipulation Pro-

grams (SMs) T, such as MACSYMA a'*, but present

SMs are incapable of automatically performing

all the necessary simplification,combinations, and

cancellations of terms associated with algorithmic

simplification of expressions. Consequently, the

user must be familiar with the commands avail-

able for the organization of expressions and con-

duct various trials and experiments to identify a

symbolic procedure which is efficient.As a result

of these two-dimensional studies, it was decided

to extend the quasianalytical approach to three

dimensions and to investigate the use of Symbolic

Manipulation Programs (SMs) t°'u for obtaining

the matrix elements.

For this extended effort, it was decided

to use for the flow solver a modified version

of the three-dimensional direct-inverse analysis-

design transonic full potential fully conservative

code, ZEBRA 1_-ts. The full potential equation

was selected because it can be solved rapidly and

isrobust, and accurate for engineering purposes is.

Further, it can be formulated using a stretched

Cartesian grid system that can be rapidly gener-

ated and which has simple metrics. Also, such a

grid permits the variation of several design param-

eters without changing the physical or computa-

tional grids. For the present work, the analysis

portions of ZEBRA have been rearranged and un-

needed portions deleted. In addition, the capabil-

ity of calculating the sensitivityderivatives via the

finitedifference approach has been added.

2

Problem Statement

Application of the quasianalyticai method to

the full potential equation yields the sensitivity

equation

(t)

where the residual expression in the computational

plane in terms of backward differences is

hU _V
P_,i,k = _x('-f )i+tl2,i,_ + _r(-j-)i,i+tl=,t

g,W
+_z(--j-)i,i,_+tl2

The retarded density coefficients in Eq.(2) are

(2)

where

Pi+tl_,j.k = (t - vi+al_,i.t)pi+ll_d.k

+vi+tl3d,l=Pi-tl2,j,i=

1

Pi,j+t/2,k = _(Pl,j,k + i_i,j+t,k)

1

(a)

(_)

(5)

[
Pi,j,k = [1 --

and

7-I(UOx + VCy + W4g)]_-f+l

Mc

ui,j,t = minll, maz(l M_#,t'i, 0)1

In Eq.(7), the Mach number is obtained from

.To -_-_-r-,
= t¥-)_-

Pi,j,k

and thus

'Y -- I /t/f_ . _--___

(6)

C7)

(s)

_---_--¢-'-v- t) (0)
Mi'i'_ = 7 - 1 ,vi,j,_

where Pi,i,t is nondimensionalized by po. From

Eqs.(7) and (9),

0, Mis,_ <: - £Y--=,2_-d2 M¢i,_ > t (to)

[]



m

The contravariantvel0citieffRre

Lr= (X2-+ X_)_x + Xycy

V= X_'_x + @y

(It)

(12)

w = Cz (l_)

where the full potential is split into perturbation

and freestream components as

¢i,j,t = $i,j,_ + XqooC°J(cO + ZqooSin(a) (14)

Note that the angle of attack entersthe formula-

tion thru the above equation. Also note that the

physicalgridsystem (x,y,z)istransformedintothe

wing alignedcomputational grid(X,Y,Z) by

z - zle(y) (t_)
X(=,v) = c(y)

y(y) = y (tG)

Z(z)= : (z7)

The boundary conditions are the surface

boundary condition,

8z @z (is)
w = u-_ + v-_v

the Kutta condition along the wing semispan,

r=AS, =TE<ZS-°° (19)

and the far fieldboundary condition.Additional

conditionsincludeupdating the potentialon the

downstream boundary (_ = 0) and implementing

the wing symmetry condition by setting V = 0.
Once the unknown sensitivities aS/SXD are

obtained, the sensitivities of the pressure coeffi-

cient, Cp, with respect to the design variables can

be computed. From the pressure coefficient ex-

pression

P - Poo (20)
cp- _/2

substitution for the pressure using the isentropic

relation yields

('y+ I)/'_(p7_ p_) (2_)
cp - aq_

where

_f+t
(22)

and where the freestream values qoo, poo, and Poo

in Eqs.(20) and (21) are

"r + t j_/2 (2_)
qoo= l.r _ l+ zlM_

"r- t 2 tt/(-c-t)
poo= II - _-[_ooj

(24)

poo= q'+l

Design Variables

Design variables can be classified according
to whether or not they are coupled. Uncoupled

design variables are termed basic variables, which
are the independent variables that influence the

solution of a problem; while coupled design vari-

ables are termed nonbasic and are obtained from

the basic design variables usually using simple al-

gebraic expressions. For example, in the current

problem, wing planform sweepback angles are non-
basic design variables Which are obtained knowing
the basic variables or the coordinates of the cor-

ner points of the wing. Other examples of nonbasic
variables are the wing semi-span, aspect ratio, and

taper ratio.
The basic design variables for the current

problem are:

(a) Freestream design variables: These include
the freestream Mach number and the angle of

attack. The Mach number enters the formu-

lation thru Eq.(23) while the angle of attack

shows up in Eq.(i4).

(b) Cross section design variables: These include
variables that define the airfoil section such as

maximum thickness, maximum camber, and
location Of maximum camber for a NACA

four-digit section and, variables that define
each spanwise section such as geometric twist.
For the current problem, these varlab]es en-

ter the problem via the boundary condition,

Eq.(18),

(c) Planform design variables:These variables

definethe geometry ofthe wing planform. In

this study, the coordinatesof the wing cor-

ner pointsare used as the basicdesign vari-

ables.Knowing the sensitivitiesWith respect

to these basic variablesallows evaluationof
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the derivativeswith respect to the nonba-

sic variables. The coordinates of the cor-

ner points enter the current formulationvia

Eq.(15).

Thus, for the current three-dimensionalproblem,

the vector of design variablesconsistsof twelve
variablesand sixderivedvariablesand isgivenby,

These variablesare used in obtaining the right

hand sidevectorsin Eq.(1).

Symbolic and Numerical Treatment

The basic approach used tosymbolicallydif-

ferentiatethe residualexpressionwas to treatthe

main expression in terms of smaller subexpres-

sions,each of which was examined in terms of

itsconstituents.This processwas extended until

the finalsubexpressions included the appropriate

derivativeargument, the reduced potentialor the

design variables,in a simple functionalform. The
best method to obtainthesesubexpressionswas to

consider the governing equation and the involved

intermediateexpressionsinthe originalform given

inEqs.(2)-(14).This splittingor nestingofexpres-

sions with variousintermediatedependencies de-

claredinadvance allowedeach subexpressiontobe

handled efficientlyby the symbolic manipulator.

This usage of the chain ruleof differentiationto-

gether with MACSYMA's abilityto keep trackof

variousequationsresultedinan efficientscheme of

analyticaldifferentiation.Itisnoted that an early

attempt to obtain the derivativesfrom a residual

expressed as an explicitfunction of the reduced

potentialthru appropriate substitutions,Eq.(14)

into (11),(12) and (13) up to Eq.(2),proved to

bc a poor strategysincethe rapid increasein ex-

pressionsizeeventuallycaused MACSYMA toen-

counter limitationson memory and manipulative

ability.The experiencegained from thisattempt,

however, turned out to be usefulinidentifyingthe

capabilitiesand limitationsofvariousMACSYMA
commands and assistedinthe development offur-

ther symbolic aspectsassociatedwith the project.

During thisstudy,variousMACSYMA codes

have been developed to assistin the application

of the quasianalyticalmethod. The firstcode,

termed RMD.MAC, findsallresidualreduced po-

tentialdependencies. This code isneeded priorto

carrying out the analyticaldifferentiationof the

residual,Eq.(2),with respectto the reduced po-
tentialfunction. Notice that the latterfunction

sho_vsup in Eq.(14),where the detailsof the de-

pendence of the residualexpressionon thisfunc-

tion arc not obvious, since intermediate expres-

sionsEqs.(3) to (13) arc involved. As mentioned
earlier, handling each intermediate subexprcssion

separately simplifies the operations involved. The
result of this code is a file which includes various

intermediate dependencies obtained in the form
of lists. The second code termed RMDER.MAC,

uses these lists and starts the symbolic differen-

tiation process in order to obtain the Jacobian

and right hand side vectors. The result of this

lengthy code is a large FORTRAN segment that
includes three subroutines and is about 15000

lines long. As mentioned in the following section,

this segment which is the heart of the quasian-

alytical method, is linked into the quasianMyti-
cal sensitivity driver. The third MACSYMA code
is termed RCP.MAC, and generates FORTRAN

source code for the derivatives of the pressure co-

efficient, Eqs.(21) to (25), with respect to the vec-

tor of design variables. This code uses the reduced

potential sensitivity derivatives as input arrays.
This segment of FORTRAN source code is also

linked with the segment obtained from the second
MACSYMA code. Finally, the fourth MACSYMA

code is termed RESiD.MAC and was created dur-

ing debugging operations to test the evaluation of
various residual terms. This program was very

helpful in revealing logic and procedure errors in
RMDER.MAC. Finally, it is important to empha-
size that each of the above MACSYMA codes is

executed only once followed by a transfer of the re-

sulting FORTRAN segments to the QA sensitivity
driver.

Direct solvers that were previously used in the

two-dimensional problem 2 (i.e. tridlagonal decom-

position and full Gaussian elimination) failed on
the three-dimensional problem due to limitations

on memory; while the iterativc routines developed

earlier worked properly but were very slow. How-

ever, library routines 1¢ available on the IBM-3090

were extremely efficient with respect to memory
and execution speed; and two scientific library
solvers based on the itcrative conjugate gradient

method and the generalized minimum residual ap-

proach have been used with success. For these
solvers, the exact amount of storage needed de-

pends on the sparsity and band width of the Ja-
cobian matrix which in turn depends on the size

of the three-dimensional grid. The present grid of

45"30"16 yields a large, sparse, banded, and un-

symmetric Jacobian matrix of about 17500*17500
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that is less than one percent dense. An incomplete

LU factorization is applied only once to this large

matrix, and the sensitivity equations are solved

using the iterative CG or GMRES methods _6'1''18.

Following the factorization of the Jacobian matrix,

back substitution using the known right hand side

vectors generates the unknown sensitivity deriva-
tives with a trivial computational cost. Recall that

one crucial objective of this study is to exploit the

efficiency of the QA method as the number of de-

sign variables is increased.

Program Structure

The analysis-sensitivity program consists of

the modified analysis program, ZEBRA, the finite

difference sensitivity driver, and the quasianalyti-

cal sensitivity driver. Execution of the main code
starts with an analysis run followed by sensitivity

derivative calculations for each point in the flow-

field. These calculations are carried out either us-

ing the FD method or the QA approach. The FD
portion of the code uses two consecutive ZEBRA
runs to calculate a vector of sensitivity derivatives.

This brute force technique, While stralght-forward,

has the disadvantage of being expensive to im-

plement and exhibits problems when single pre-
cision variables are used. The QA driver consists

of two main parts. The first part assembles the
Jacobian matrix and the right-hand-side vectors.

This assembly is achieved using calls to the large

code segment generated via MACSYMA. This sec-
tion of subroutines, as explained earlier, contains
source code for the elements of the Jacobian ma-

trix and rlght-hand-side vectors. Following the
numerical assembly step, the second part of the

sensitivity driver solves the sensitivity equations

using one of the available linear sparse solvers and
yields the unknown sensitivity vectors. Finally,

the resulting sensitivity derivatives 8¢/8XD are
processed to obtain the pressure coefficient sensi-

tivity derivatives, OCp/SXD, at twenty-five chord-
wise locations at each of the twenty wing semis-

pan stations. This process is performed using the

subroutines generated via RCP.MAC, the MAC-
SYMA file used to symbolically differentiate the

the pressure coefficient with respect to the reduced

potential.

Test Cases

The wing configuration considered is that for
the four cornered ONERA M6 wing planform _-_5

with NACA 1406 airfoil sections. For this configu-

ration, four test cases have been successfully con-

ducted. The first case is subcriticai at a freestream

Mach number of 0.8 and an angle of attack of one

degree. The second and third cases are supercrit-
ical at Mach number of 0.84 and 0.88 respectively

and an angle of attack of three degrees, while the

fourth case is supersonic at a Much number of 1.2

and an angle of attack of three degrees. Due to

space limitations, only results for the second case

(Moo : 0-84, rt : 3deg) are presented in this pa-

per. This case is challenging since it includes a
subcriticai lower surface flow and exhibits an up-

per surface shock wave located at 70% chord at
the root to 10% chord at the tip that increases in

strength from the root to a point near the wing

tip. Thus, results for this case are believed suffi-
cient to demonstrate the capabilities of the present

analysis-sensitivity program ...... :

In the above cases, a coarse-medium grid se-

quence was used in computing the analysis infor-
mation in order to speed up convergence. For

the FD method, each design variable was indi-

vidually perturbed by a small amount, typically
1 * l0 -_, and a new fiowfield solution obtained. In

all cases, double precision arithmetic was utilised
and the residual reduced eight orders of magni-

tude. In addition, the sensitivity information was

computed by restarting each of the perturbed de-
sign states from the coarse grid then proceeding

to the medium grid. Different strategies for grid

sequencing together with various choices of a suit-

able starting solution are all valid options to speed

up tlle FD approach. In the =QA method, as men-
tioned earlier, the sensitivity equation was set up

with multiple right hand sides (the current vector

of design variables, Eq.(26), includes twelve basic

parameters) and was solved using the CG routine.

Results a_dpi_5-sglon

For the subcritical test case, the results ob-

tained by the quasianal_tjcal method were found
to be in excellent agreement wi_th results obtained
via the finite difference method. In addition, the

results followed the trend of the two-dimensional

study 7:

Typical results for the chordwise variation of

the pressure coefficient sensitivity derivatives at
the Moo = 0.84,a ---- 3deg supercritical case are

shown on Figs. 1 and 2 for a midspan station.
Also displayed next to the legend in each case

are the integrated coefficients OCi/cgXDi. As ex-
pected, the sensitivity derivative profiles for the
lower surface are typical of subcritical flow2; and

the upper surface results exhibit large variations
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in the vicinityof the shock wave. The latterre-

flectthe influenceon the aerodynamic coefficients

ofthe sensitivityof the upper surfaceshock wave

location to various design parameters. In addi-

tion,a comparison of the spanwise distributionof

the integratedcoefficients,OCI/OXD,, isshown on

Fig. 3; and in general these section values arc

smaller in magnitude than corresponding values

forthe two-dimensional problem2. As can bc seen

on Figs. I-2,the agreement between the FD and

QA resultsisexcellent,indicatingthat accurate

resultscan be obtained using the quasianalytical

approch forthree-dimensionaltransoniccases.

Since both the FD and QA methods yieldsim-

ilarresults,the question arisesas to which isthe

leastexpensive. Current resultsobtained with the

CG solverindicatethat the QA method iscom-

putationallymore efficientthan the brute-force,

finitedifferenceapproach. A representativeCPU

time r_atioQA/FD of 0.46 was obtained for the

above case with twelvedesign variables.Itisrec-

ognlzcd,however, that the potentialexistsfor re-

ducing the cost associatedwith the FD method.

For example, the perturbed runs could be exe-

cuted directlyon the medium grid startingwith

the design point solutionobtained on the coarse

grid.Likewise,the QA method could be improved

by speeding up the evaluation of the Jacobian and

right hand sides and/or using various options re-
lated to the library solver. Therefore, the stated

time ratio should only be considered as an esti-

mate for comparing the two methods.

One application of sensitivity derivatives is

solution prediction. Fig. 4 compares the pres-

sure coefficent distributions predicted at midspan

using a first order Taylor series expansion about

a design point with the actual pressure coefficient
variation. The predicted Cp's are calculated using

0cp
Cppredicted = Cpdesign + O--'_iAXDi

(27)

where the OCp/OXDi valueswhere obtained from

the QA approach and AXDi = (0.005,0.z,0.005,

0.00t,0.I,0.1)for (Moo,a,T,C,L,T_)respectively.

As can be seen, the agreement between the

two distributionsis very good, which indicates

that the sensitivitydcrlvativcscalculatedusing

the QA method can indeed bc used in prediction.

As mentioned earlier,another important applica-

tion of sensitivityderivativesisin optimization

routines.This application,however, isbeyond the

scope of the currentproject.

Conclusion and Recommendations

Based upon the above results, it is concluded

that the quasianalytical method is a feasible and

efficient approach for •accurately obtaining tran-

sonic aerodynamic sensitivity coefficients in three
dimensions. In addition, use of the symbolic ma-

nipulation package, MACSyMA, to carry out the
symbolic evaluation of the elements of the sensi-

tivity equations is crucial in this type of sensitiv-

ity study. The results obtained from the quasi-

analytical method are almost identical to those

obtained by the finite difference approach. Fur-

thermore, the study indicates that (a) obtaining

the quasianalytical sensitivity derivatives using an
iterative conjugate gradient method is more ef-

ficient than computing the derivatives by the fi-
nite difference method, especially as the number

of design variables increases, and (b) the quasi-

analytical method shows promise with regard to

analysis-sensitivity methodologies applied to large

aerodynamic systems.
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ABSTRACT

The quasianalytical approach is apphed to the three-dimensional full potential equation
to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic ma-
nipulation is used to reduce the effort associated with obtaining the sensitivity equations,
and the large sensitivity system is solved using "state of the art" routines. The quasian-
alytical approach is believed to be reasonably accurate and computationaUy efficient for
three-dimensional problems.

INTRODUCTION

To design transonic vehicles using codes which utilize optimization techniques requires
aerodynamic sensitivity coefficients, which are defined as the derivatives of the aerodynamic
functions with respect to the design variables. In most cases, the main contributor to the
optimization effort is the calculation of these derivatives; and, thus, it is desirable to have
numerical methods which easily, efficiently, and accurately determine these coefficients for

large complex problems. The primary purpose of the present study is to investigate the
application of the quasianalytical method [1,2] to three-dimensional transonic flows using as
the fundamental flow solver the three-dimensional transonic full potential fully conservative

code, ZEBRA [3].

iil

PROBLEM STATEMENT

F-

m

Application of the quasianalytical method to the full potential equation yields the sen-
sitivity cquation

(I)
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where XD is the vector of design variables and the residual expression, R_,j,k, of the full
potential equation in the computational plane, X,Y, z, in terms of backward differences is

)U bv _ _w •
_.j._ = _x (-y-)_+,/_.;._ + 8r (-y-)_.j+,/2._ + _zC-7-)_.j.k+_/_ (2)

: = -, . ........

tIere, the retarded density _ and the contravariant velocity components U,v, and w, are
lengthy functions of the reduced potential function, ¢. The boundary conditions for Eq.(2)
are the .........r_ce condition, W -- u--a_ + vO___,or,the Kutta condition .al°ng. the wing semispan,
I" = A¢, ZTS < z < 0% and the far_eld condition. Additional condlhons are the downstream

boundary potential ¢_ = 0 and the wing symmetry condition, V = 0.

The discretized form of Eq.(2) contains lengthy expressions, and mathematical symbolic

manipulation [4-6] was used to determine the functional dependencies of the residual, the
analytical forms of the derivatives, and to generate the corresponding computer code. The
basic approach used to differentiate the residual expression was to treat themaln expression
in terms of smaller subexpressions, each of which was examined in terms of its constituents.
This process was extended until simple functional forms for the derivatives were obtained.
This subdivision and chain rule differentiation by symbolic manipulation efficiently generated

source code for the jacobian and vectors in Eq.(1). The resultant large sparse system,

typically 17500 • 17500, of algebraic equations is then efficiently solved for _ using either
the iterative conjugate gradient method or the generalized minimum residual algorithm [7-

8]. From these, the pressure and lift coefficient sensitivities to the design variables can be
computed. Notice that the effort associated with this approach is essentially independent of
the number of design variables considered on the right-hand-side of Eq.(1).

EXAMPLE AND DISCUSSION

Consider the ONERA M6 wing planform with NACA 1406 airfoil sections at a super-
critical condition of Mo_ = 0.84 and a = 3deg, which has subcritical lower surface flow and
exhibits an upper surface shock wave located at 70 % chord at the root to 10 % chord at::::;

the tip that increases in strength from the root to a point near the wing tip. Basic design
variables for the current problem include freestream design variables, Mach number Moo and

angle of attack a; cross-sectlon design variables of maximum thickness, T, maximum camber,
C, and location of maximum camber, L; variables that define wing twist, T1, T2, T3, and T4;
and planform tip coordinates, XLEtip,XTEtip, and Y,p. Knowing the sensitivities to these

basic design parameters permits subsequent evaluation of the derivatives with respect to
the nonbasic variables taper ratio, aspect ratio, wing area, and sweepback angles. Thus, the

present method determines sensitivity coefficients for twelve design variables and five derived

design variables.

As part of the solution O¢/OXD values are obtained for every grid point in the ftowfield.
Also, the method automatically computes 3Cp/c3XD at twenty-five chordwise locations at
each of the twenty semi-span stations on the wing as well as OC,/OXD at each of the span
stations. Typical results for the example case are shown in Fig.1 for a midspan station. As
expected, the sensitivity derivative profiles for the lower surface are typical of subcritical

flow [2]; and the upper surface results exhibit large variations in the vicinity of the shock
wave. The latter reflect the influence on the aerodynamic coefficients of the sensitivity of

the upper surface shock wave location to the various design parameters. Currently, efforts
arc in progress to validate the present method by comparison with the finite difference
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approach, which calculates sensitivities by perturbing a design variable from its previous
value, obtaining a new solution, using the differences between the new and old solutions
to obtain the sensitivity coefficients. While this direct technique is computer intensive and

inefficient, it should serve as a check on the present method.

Based upon the present results, it is concluded that the quasianalytical method is a
viable and efficient concept for the determination of three-dimensional transonic aerodynamic

sensitivity coefficients. In addition, use of symbolic manipulation to evaluate the dements
of the sensitivity equation is believed to be an efficient approach to the development of
such methods. Finally, further studies are needed to determine the accuracy and range of

applicability of the quasianalytical approach.
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The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing

aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used and is crucial in

reducing the effort associated with obtaining sensitivity equations, and the large sensitivity system is solved using

sparse solver routines such as the iterative conjugate gradient method. The results obtained are almost identical to

those obtained by the finite difference approach and indicate that obtaining the sensitivity derivatives using the quasi-

analytical approach is more efficient than computing the derivatives by the finite difference method, especially as

the number of_ design variables increases. It is concluded that the quasi'analytical method is an efficient and accurate

approach for obtaining transonic aerodynamic sensitivity coefficients in three dimensions.

C

CG

Ci

CL

Cp

c(y)

FD

GMP.ES
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Local Mach number M

Cutoff Mach number 0.94 __. M e < 1.0

Freestream Mach number
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Freestream velocity, nondimensionalized by V*

Maximum thickness in fraction of chord

Twist angles at 0, 20, 60, and 100% semispan

Contravariant velocity components

Critical speed

Physical grid system

Computational coordinates

Leading edge function

x-Coordinate of leading edge of wing tip

x-Coordinate of trailing edge of wing tip

y-Coordinate of wing tip

Vector of design variables

Density, nondimensionalized ,oo

Freestream density, nondimensionalized by PO

Stagnation density

Retarded density

First order backward difference operator

Switching function

Angle of attack

Ratio of specific heats

._ Reduced potential function

Full potential function

Circulation

Introduction

To design transonic vehicles using optimization techniques requires aerodynamic sensitivity coefficients,

which are defined as the derivatives of the aerodynamic functions with respect to the design variables. In most cases,

the main contributor to the optimization effort is the calculation of these derivatives; and, thus, it is desirable to have

numerical methods which easily, efficiently, and accurately determine these coefficients for large complex problems.

At present I-8, there are two primary approaches for calculating transonic aerodynamic sensitivity derivatives. In the

first approach, the sensitivities are calculated by perturbing a design variable from its previous value, a new

complete solution is obtained, and the differences between the new and the old solutions are used to obtain the

sensitivity derivatives. This brute force direct tedmique is computer intensive for complex governing equations that

w
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include a large number of design variables. In the second approach, termed the quasi-analytical method, the

sensitivities are obtained by solving a large sparse system of algebraic sensitivity equations. While the matrix

elements in these algebraic sensitivity equations are obtained analytically, they-are obtained by analytically

differentiating the discretized or numerical forms of the equations governing the flowfield. Further, the aerodynamic •

and sensitivity solutions are obtained numerically. Thus, the method is termed a quasi-analytical rather than a

numerical or analytical method. It should be noted that the differentiations to obtain the coefficients for the

algebraic sensitivity equations, while being straightforward in principle, are usually lengthy and tedious. However,

once obtained, the sensitivity equations can be very efficient and accurate for computing large numbers of sensitivity

coefficients.

In the first phase of this research 2, the quasi-analytical approach was developed and applied to two-

dimensional airfoils. Based upon these proof-of-concept investigations, it was concluded that the quasi-analytical o

method was a feasible approach for accurately obtaining transonic aerodynamic sensitivity derivatives in two

dimensions and was often more accurate and efficient than the finite difference method as the number of design

variables was increased. Further, the algebraic forms of the matrix elements in the two-dimensional sensitivity

equations were determined by hand, which involved extensive effort associated with differentiating the discretized

residual with respect to the various design variables and the dependent unknowns. Today, such operations could be

carried out using symbolic manipulation programs 9, such as MACSYMA t°'t t, but present symbolic manipulators

are incapable of automatically performing all the necessary simplification, combinations, and cancellations of terms

associated with algorithmic simplificationof expressions. Consequently the user must be familiar with the commands

available for the organization of expressions and conduct various trials and experiments to identify a symbolic

procedure which is efficient. As a result of these two-dimensional studies, it was decided to continue the research.

Consequently, the primary objectives of the present effort have been to apply the quasi-analytical method to three-

dimensional transonic flow, investigate the use of symbolic manipulation programs 12,13 for obtaining the matrix

elements of the sensitivity equations, and to determine the efficiency and accuracy of the quasi-analytical approach

for determining transonic aerodynamic sensitivities.

For this extended effort, it was decided to use for the flow solver a modified version of the three-

dimensional direct-inverse analysis-design transonic full potential fully conservative code, ZEBRAI114-17. The full

potential equation was selected because it can be solved rapidly and is robust and accurate for engineering

purposes t7. Further, it can be formulated using a stretched Cartesian grid system that can be rapidly genera(ed and _

which has simple metrics. Also, such a grid permits the variation Of several design parameters without changing

the physical or computational grids. For the present work, the analysis portions of ZEBRAII have been rearranged

and unneeded portions deleted. In addition, the capability of calculating the sensitivity derivatives via the finite

difference approach has been added.
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Problem Statement

Application of the quasi-analytical method to the full potential equation yields the sensitivity equation

_lt oxo ; t_) (x)

where the residual expression in the computational plane in terms of backward differences is

Rid'k= _ J ]i.tl'._d._ id *ll'2,k _ J )i.j. lt...ll2

(2)

=

u

=

t ,

i.

k_
r=

m

U

IEi

E2J

The retarded density coefficients in Eq. (2) are

Ot,tnj._ = (I - v_, _j.k) Oi,uTj.k

÷ Vi-l/2d.k Pi-ll2d.k

where

and

-- I ['-" -- -- -- /

0_j. lr_., =5 _P,• _c,-.a.k+ Pl. lt_- l.k ÷ P_-taj.k + Pi -t_. l.k)

Pij t, 1/l = 'j-_Pi, lt2j.t + Pi, lp_j. k +! ÷ Oi- l/'_j.t + Pi-l/zj.l:, z)

!

P =[1_ _Y +1_-1(U_x + V(_y÷ W(_z)],r- 1

(3)

(4)

(5)

(6)

(7)

=

w 4

=
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In Eq. (7), the Mach number is obtained from

1= v-t= i ÷ v-__.__1M2 ,
p 2

(8)

m

i

II

and thus

M_---k-2(p'-, - l)
y-1

where p is nondimensiona!ized by Po- From Eqs. (7) and (9),

0;v --, (v - 1)_/2

pi-l_ 1 '

M<I

M>I

(9)

(lO)

(11)

(12)

03)

The contravariant velocities are

v=(x_, x,5_,÷ x,%

V = Xyeb x + _r

W=ffP z

and the full potential is split into perturbation and freestream components as

r_id.k = _id. k + Xq Cos(a) + Zq Sin(a) (14)

Note that the angle of attack enters the formulation thru the above equation and that the physical grid system (x,y,z,)

is transformed into the wing aligned computational grid (X,Y,Z) by

X(x,y) - x - Me(y) (I5)
c(y)

r(y) =y (16)
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Z(z) = z

The boundary conditions are the surface boundary condition,

w= u +v&
OX og

(17)

(18)

the Kutta condition along tile wing semispan,

r = t,_, xre<x _ (19)

and the farfield boundary condition. Additional conditions include updating the potential on the downstream

boundary (dO= = 0) and implementing the wing symmetry condition by setting V = O.

Once the unknown sensitivities adolaXD are obtained, the sensitivities of the pressure coefficient, Cp, with

respect to the design variables can be computed. From the pressure coefficient expression

P-P
cp - (20)

2
pq.12

t _

k.

substitution for the pressure using the isentropic relations yields,

Cp - (v * 1)Iv (pV _ pD (2i)
z

Pq.

where 0 is given by Eq. (6) and where the freestream values q., p_, and P_ in Eqs. (20) and (21) are

I y + 1 ]1t27 /w1"I,-1
(22)

= :

i--a

z 2

w

2 ;

p. =[1 __"Y-_q'¥- 1 2] I/('t-1}
(23)

p_ v ÷ l py (24)
2-/

Design Variables

Design variables can be arbitrarily classified according to whether or not they are coupled. Uncoupled

design variable are termed basic variables and are the independent variables that influence the solution of a problem.
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Coupled design variables are defined here to be nonbasic and are obtained from the basic design variables usually

using simple algebraic expressions. For example, in the current problem, wing planform sweepback angles are

defined as nonbasic design variables since they are obtainable from the basic variables, i.e. the coordinates of the

comer points of the wing. Other examples of nonbasic design variables are the wing area, aspect ratio, and taper

ratio.

The basic design variables for the current problem include freestream variables, airfoil cross-section

variables, and planform parameters. The freestream design variables include the freestream Mach number, M_,

and the angle of attack, cY. The Mach number enters the formulations thru Eq. (22) while the angle of attack shows

up in Eq. (14). The airfoil section design variables include maximum thickness, maximum camber, location of

maximum camber, and four angles that define at each spanwise station the amount of geometric twist. These

variables enter the problem via the wing surface boundary condition, Eq. (18). The basic planform design variables

define the geometry of the wing planform and are comprised of the coordinates of the wing comer points, which

enter the formulation via Eq. (15). Evaluation of the sensitivities with respect to these basic planform variables

allows the determination of the derivatives with respect to the nonbasic variables. Thus, for the current three-

dimensional problem, the vector of design variables consists of twelve basic variables and is given by,

xo =[M., r, c,L, r,, r,,xL ,xr , (25)

These variables are used in obtaining the right hand side vectors in Eq. (1).

Note that the design variables listed in Eq. (25) form a complete set of the basic design variables

influencing the aerodynamic solution for the wing planform and wing sections considered in the present

investigation. If the wing planform were more complicated, having for example a leading edge break, then the

coordinates of that break point would have to be included in the vector of design variables. For more complex

configurations or for problems involving coupling such as aeroelastic phenomena, the design variable set would be

found by examining the solution model(s) and determining which flowfield and geometric parameters appear and

consequently affect the aerodynamic solution.

Symbolic and Numerical Treatment

The basic approach used to symbolically differentiate the residual expression was to treat the main

expression in terms of smaller subexpressions, each of which was examined in terms of its constituents. This process

was extended until the final subexpressions included the appropriate derivative argument, the reduced potential or

the design variables, in a simple functional form. The best method to obtain these subexpressions was to consider

the governing equation and the involved intermediate expressions in the original form given in Eqs. (2)-(14). This

splitting or nesting of expressions with various intermediate dependencies declared in advance allowed each

subexpression to be handled efficiently by the symbolic manipulator, in this case MACSYMA. This usage of the
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chain rule of differentiation together with the ability of the symbolic manipulator to keep track of various equations

resulted in an efficient scheme of analytical differentiation. It is noted that an earlier attempt to obtain the derivatives

from a residual expressed as an explicit function of reduced potential thru appropriate substitutions, Eq. (14) into

(11), (12) and (13) up to Eq. (2), proved to be a poor strategy since the rapid increase in expression size eventually

caused the manipulator program to encounter limitationson memory and manipulative ability. Tile experience gained

from this attempt, however, turned out to be useful in identifying the capabilities and limitations of various symbolic

commands and assisted in the development of further symbolic aspects associated with the project.

During this study, various symbolic manipulator codes were developed to assist in the application of the

quasi-analytical method. The first code, found all residual reduced potential dependencies. This code was needed

prior to carrying out the analytical differentiation of the residual, Eq.(2),-with respect to the reduced potential

function. Notice that the latter function shows up in Eq. (14), where the details of the dependence of the residual

expression on this function are not obvious, since intermediate expressions Eqs.(3) to (13) are involved. As

mentioned earlier, handling each intermediate subexpression separately simplifies the operations involved. The result

of this code was a file which included various intermediate dependencies obtained in the form of lists. The second

code used these lists to perform the symbolic differentiation process to obtain the Jacobian and right hand side

vectors for Eq. (1), and the result of this lengthy code was a large 15000 line FORTRAN segment that included

three subroutines. This segment is the heart of the quasi-analytical method and is linked into the quasi-analytical

sensitivity driver. The third symbolic code generated FORTRAN source code for the derivatives of the pressure

coefficient, Eqs. (21) to (25), with respect to the vector of design variables and us_ the reduced potential sensitivity

derivatives as input arrays. This segment of FORTRAN source code was then also linked with the segment obtained

from the second symbolic code. Finally, the fourth symbolic code was created during debugging operations to test

the evaluation of various residual terms and was very helpful in revealing logic and procedure errors. Finally, it

is important to emphasize that each of the above symbolic codes is executed only once followed by a transfer of

the resulting source segments to the quasi-analytical sensitivity driver. Details and sample MACSYMA codes for

these processes are given in Ref. 4.

Direct solvers that were previously used ill the two-dimensional problem _-failed on the three-dimensional

problem due to limitations on memory; while the iterative routines developed earlier worked properly but were very

slow. However, library solvers 18 based on the iterative conjugate gradient method and the generalized minimum

residual approach have been used with success and hav e proven to be extremely efficient with respect to memory

and execution speed. For these solvers, the exact amount of storage needed depends on the sparsity and band width

of the lacobian matrix which in turn depends on the size of the three-dimensional grid. The present grid of 45 x

30 x 16 yields a large, sparse, banded, and unsynlmetric Jacobian matrix of (43 X 29 X 14) X (43 X 29 X 14) or

about 17500 x 17500 that is less than one percent dense. An incomplete LU factorization is applied only once to

this large matrix, and the sensitivity equations are solved using the iterative CG or GMRES methods 18,19,20.
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Following the factorization of the Jacobian matrix, back substitution using the known right hand side vectors

generates the unknown sensitivity derivatives with a trivial computational cost. This approach exploits the efficiency

of the QA method as the number of design variables is increased.

Program Structure

The analysis-sensitivity program consists of the modified flowfield analysis program, ZEBRA, the finite

difference sensitivity driver, and the quasi-analytical sensitivity driver. Execution of the main code starts with an

analysis run followed by sensitivity derivative calculations carried out either using the FD method or the QA

approach. The FD portion of code uses two consecutive ZEBRA runs to calculate a vector of sensitivity derivatives.

This brute force technique, while straight-forward, has the disadvantage of being expensive to implement and

exhibits problems when single precision variables are used. The QA driver consists of two main parts. The first part

assembles the Jacobian matrix and the right-hand-side vectors thru calls to the large code segment generated via

symbolic manipulation. This section of subroutines, as explained earlier, contains source code for the elements of

the Jacobian matrix and right-hand-side vectors. Following the numerical assembly step, the second part of the

sensitivity driver solves the sensitivity equations using one of the available linear sparse solvers and yields the

unknown sensitivity vectors at each point in the flowfield. Finally, the resulting sensitivity derivatives, _/aXD,

are processed to obtain the pressure coefficient sensitivity derivatives _gCp/SXD, at twenty-five chordwise locations

at each of the twenty wing semispan stations.

:_÷_ _ : Tesi cases _ ....... _ _ "_::

For the present study, most of the test cases utilized the four cornered ONERA M6 wing planform 15-17

with a variety of airfoil sections:_nCiuding NACA 1406, 17_, 2,_66, anc1_2706 a_rfoils. This planform has an aspect

ratio of 3.8 and a taper ratio of 0.56, with leading and trailing edge sweeps of thirty and 15.76 degrees respectively.

Freestream conditions included subcritical cases at Mach 0.8 and an angle of attack of one degree, several

supercritical transonic cases, and some supersonic cases up to Mach 1.2. Due to space limitations, most of the

results of this paper will be for the ONERA M6 planform with NACA 1406 airfoil Sections at freestream conditions

of Mach 0.84 and three degrees angle of attack. This case is challenging since it has a subcritical lower surface flow

and exhibits an upper surface shock wave located at 70% chord at the root that shifts to 10% chord at the tip and

which increases in strength from the root tO a point near the wing tip. Thus, the results for this case should be

sufficient to demonstrate the capabilities of the present analysis-sensitivity method at transonic conditions. Complete

detailed results for all the cases are presented in Refs. 4 and 21. :

In the above cases, a coarse-medium grid sequencing was used in the flowfield computations to enhance

convergence. For the finite difference method of computing the sensitivities, each design variable was individually

perturbed a small amount, typically 1 x 106, and a new flowfield solution obtained. In all cases, double precision

arithmetic was utilized and the residual reduced eight orders of magnitude_ in a_diti0fi, the finite difference

sensitivity results were computed by restarting each of the perturbed design states from the coarse grid then
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proceeding to the medium grid. Different strategies for grid sequencing, such as starting on the medium grid with

a previously obtained converged soulution, are all valid options to speed up the finite difference approach; but these

were not investigated in this study. In the quasi-analytical method, the sensitivity equation, Eq. (I), was solved with

twelve right hand sides representing the vector of design variables, Eq. (25), using one of the spar_ solvers. In all

cases, Odo/aXD values were obtained for every gridpoint in the flowfield. Also, the method automatically computed

upper and lower surface OCp/aXD values at twenty-five chordwise locations at each of the twenty semispan stations

on the wing planform as well as the aC1/aXD values at each of the span stations and the overall wingaCL[OXD

results.

Results and Discussion

For the subcritical test cases, the results obtained by the quasi-analytical method were found to be in

excellent agreement with results obtained from the finite difference method. In addition, the results followed the

trend of the two-dimensional study. 2

Representative results for the chordwise variation of the pressure coefficient and its sensitivity derivatives

for a supercritical case (Mo. = 0.84, ct = 3*) are shown on Fig. 1 for 56.4 percent semispan. Displayed in the

comer in each case are the integrated coefficients, section lift coefficient for the pressure distribution andaCl[aXD i

for the rest. In subcritical flow, the sensitivities with respect to the Mach number and the thickness would be small

and similar for the upper and lower surfaces whil.e those for angle of attack, camber, and camber location would

have larger upper and lower surface values of opposite sign. As expected the sensitivity derivative profiles on Fig.

1 for the lower surface are typical of subcritical flow 2. However, the upper surface results exhibit large variations

in the vicinity of the shock wave that reflect the influence on the pressure of the sensitivity of the upper surface

shock wave location to various design parameters. As can be seen by noting the differences in vertical scale, the

pressures and lift coefficient at this mid semispan location are most sensitive to camber and least sensitive to camber

location. Finally, the agreement between the finite-difference and quasi-analytical prediction.s is excellent, indicating

that accurate three-dimensional transonic results can be obtained using the quasi-analytical approach.

Some results for the spanwise variation of the section lift sensitivity derivatives are shown on Fig. 2, where

the numbers in the lower left comer in this case are the total wing lift coefficient sensitivities, c3CL/c3XD i . Note that

the sensitivity of section lift to freestream Mach number and angle of attack is relatively constant over most of the

semispan, but that the lift sensitivity to wing twist at twenty (T2) and sixty (T3) percent semi-span is concentrated

in the region near the twist location. While not shown, lift sensitivities to twist at the root and the wing tip are only

one-third to one-fourth of those at midspan. In general, primarily due to wing sweep and finite span, all the section

sensitivity values are smaller in magnitude than corresponding values for the two-dimensional prohlem _-. Finally the

agreement between the finite difference and quasi-analytical section sensitivities is excellent.

Figure 3 shows representative section and wing lift sensitivity derivative results for some of the nonbasic

10
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design variables. While the total wing lift sensitivities can often be obtained by other means, the present method

also yields spanwise and chordwise information. Note that while the lifts are relatively insensitive to the semispan,

the outboard lift and total lift exhibit a strong dependence on area, a._pect ratio, and taper ratio, and that the

agreement between the quasi-ana!ytical method and the finite difference approach is reasonable. While not shown,

the corresponding derivatives with respect to the leading and trailing edge sweep angles were very small. 4, 21

While both the finite difference and quasi-analytical methods yield similar results, the present results

indicate that for twelve design variabies the quasi-analytical method is about 2.4 times computationally more efficient

than the brute force finite difference approach. However, it is recognized that the costs associated with the finite

difference method probably could be reduced by executing the perturbed runs directly on the medium grid s.tarting

with the design point solution obtained from the coarse grid. Likewise, the quasi-analytical method could be

improved by utilizing various options associated with the sparse system equation solvers; and both methods are

probably affected by grid size. Therefore, the stated relative efficiency should only be viewed as an estimate when

comparing the two methods.

One application of sensitivity derivatives is solution prediction, and Fig. 4 compares two pressure

coefficient distributions at the 56 percent semispan location predicted using a first order Taylor series expansion

about the Original calculation point wlth=the actual Variation. The predlcted Cp's Were calculated using

Cpt,,_i_.d = CPoagO,,a + (OCp /OXD i) A XD _ (26)

where the cOCp[OXDi values were obtained from the quasi-analytical method at Mach 0.84 and c_ = 3 degrees.

For the two results presented, the wing thickness was increased 8.3 percent to 0.065 chord and the wing tip leading

edge ordinate was moved aft 0.1 chord respectively. Since the original lift coefficient at this station, as shown on

Figure l(a), was 0.383, both changes resulted in a slight increase in lift coefficient and aft movement of the

shockwave at this station. However, the detailed results 4,21 show that the movement of the wing tip ordinate caused

a lift coefficient decrease in the _nb0ard_sec-tions of the wing. As can be seen on the figure, the agreement between

the quasi-analytically predicted and actual pressure distributions is very good, which indicates that the sensitivity

derivatives calculated using the quasi-analytical method can be used for predictions. Similar results were obtained

for the other design variables. 4

Since sensitivity derivatives describe the response of the overall solution to changes in design variables,

they can be computed over a range of flight conditions to determine the degree and nature of the influence of each

design variable on the solution. At transonic conditions, the Mach number strongly influences a wing flowfieid; and,

thus, sensitivity derivatives were computed for the ONERA M6 planform with NACA 1406 cross sections at an

angle of attack of three degrees for Mach numbers ranging from 0.8 to 1:2. For simplicity, only the derivatives of

the total wing lift coefficients with respect to each of the twelve basic design variables were considered. Figure 5
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shows results for three of these design variables, freestream Mach number, maximum camber location, and wing

tip trailing edge ordinate. For all the design variables the largest variation of each derivative occurs in the transonic

regime below Mach one. In this range as Mach number increases, the upper surface shock wave is rapidly moving

towards the trailing edge with the inboard portions reaching the trailing edge. first. Thus, as shown by0CL/0M

there initially is an increase in wing lift coefficient. However, by Mach 0.92; the inboard portion of the shock wave

is at or near the trailing edge, and the effects of lower surface pressure changes due to freestream Mach number

increase cannot be compensated by aft shock wave movement, thus resulting in a less rapid (smaller derivative value

of cOCLIaM) rise in lift. By Mach 0.96 the entire upper surface shock wave is essentially at the trailing edge and

the lift decreases, as indicated by the negative value of 0CL/aM . As can be seen on the figure, the effects of this

shock wave movement are captured by the variations in the sensitivity derivatives. Also, notice on Fig. 5 for

supersonic freestream Mach numbers that the sensitivities are considerably lower. Additional results 4,21 show that

the derivatives of the total lift coefficient exhibit their largest change with respect to Mo,, T, C, a, XI_,r, XT T

followed by T2, T3, L, YT, T4, and T1, indicating that a hierarchy of dominance exists among the design variables

for the current wing configuration. Finally, again there is good agreement between the results obtained by the quasi-

analytical method and the finite difference approach.
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Conclusion

Based upon the above results, it is concluded that the quasi-analytical method is a feasible and efficient

approach for accurately obtaining transonic aerodynamic sensitivity coefficients in three dimensions. In addition,

use of the symbolic manipulation packages to carry out the symbolic evaluation of the elements of the sensitivity

equations is crucial in this type of sensitivity study. The results obtained from the quasi-analytical method are almost

identical to those obtained by the finite difference approach. Furthermore, the study indicates that:

(1) obtaining the sensitivity derivatives using the quasi-analytical approach and an iterative conjugate

gradient method appears to be more effic!ent than computing the derivatives by the finite difference

method, especially when the number of design variables is large, and

(2) the quasi-analytical method shows promise with regard to analysis-sensitivity methodologies applied

to large aerodynamic systems.
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NOMENCLATURE

Chord length
Maximum camber

Section lift coefficient

Wing lift coefficient

Pressure coefficient

Young's modulus of elasticity (non-dimensionalized by 10 7 Psi)

Grid stretching factors

Leading and trailing edge index in the x direction

Location of maximum camber

Freestream Mach number

Residual of the aerodynamic equation

Twist angle at the tip

Maximum thickness : :

Twist angle at a given section

Thickness of the plate(non-dimensionalized by the chord)

Residual of the structural equation

Residual for the U equation

Freestream velocity(also Uinf)

Perturbation velocity Cartesian components

Vector of design variables

Cartesian coordinates directions
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Subscripts

oo

A

b

i,j,k
ii,jj,kk

iii,jjj,kkk
LE

!

P
root

S

TE

tip

u

Angle of attack

Structural deflections non-dimensionalized by the chord

Small perturbation velocity potential function

Ratio of specific heats

Circulation at a given station along the wing

Poisson's ratio

Freestream density

Free stream condition

Obtained from aerodynamic variables alone

Body

Grid point

Counters for the residual dependencies

Counters for the selected deflections and loads for the coupling

Leading edge

Lower side of the wing
Pressure

At the root

Obtained from the structural variables alone

Trailing edge

At the wing tip

Upper side of the wing
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INTRODUCTION

In the transonic regime, due to the non-linearity of the governing flow

equations, the determination of optimum aerodynamic loads is one of the main

difficulties facing the aircraft designer. Since most present day commercial aircraft

operate transonically, computational methods which use optimization techniques are

being developed to improve current designs. However, in order for these advanced

computational codes to become more useful as design tools, it is necessary to develop

methods for the computation of the sensitivity of the different parameters, such as

aerodynamic forces or structural deflections, to the different design variables. With a

sensitivity derivative being defined as a system response of interest with respect to a

given independent design variable, it is desirable that such sensitivity coefficients be

easily obtained.

In the past, sensitivity methodology has been used in structural design _ and

optimization programs 2 and in some aerodynamic studies. 3-8 However, the

predominant contributor to cost and computational time in the optimization procedure

has always been the calculation Of sensitivity derivatives. Hence, efficient numerical
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methodsfor computingsuchderivativesareneededfor the integrationof advanced
computationalcodesinto systematicdesignmethodology,where the computational
cost of asingleflow analysiscanbeextremelyhigh,particularlyin threedimensions.

Consequently,the primary objectiveof this researchis to investigate the
concept that it is possible to use similar, perhapsidentical, incrementaliterative,
solution approachesto efficiently couple for three dimensionaltransonic flow an
aerodynamicsolution for the pressuredistributionwith a structuralsolution for the
correspondingdeflectionsand to simultaneouslyuse thesamesolutionalgorithmsand
the quasi-analyticalmethod to obtain the aerodynamicas well as the structural
disciplinesensitivityderivativesfor thefully coupledsystemwith the input coefficients
necessaryto determinesystemsensitivities.Sincethe entiremethodis complexand
requiresanefficient flowfield aswell asstructuralsolverandsincethe presentstudy is
essentiallyproof-of-concept, it was decided for the present work to base the
aerodynamicson the transonicsmallperturbationpotentialequationand the structural
solver on the small deflection plate equation. Becauseof their simplicity, these
equationsare practical tools for the presentproof-of-conceptstudy where rapid
solutionsareessential.Previousexperiencewith this approachhasindicatedthat it is
robust and reasonablyaccuratefor engineeringpurposes. Finally, in order for an
optimizationprocessto be accurate,it musttake into accountthe systemsensitivity
derivativesinwhich theeffectsof eachdisciplineon theother is considered.Thus,the
solveralsocomputesthecouplingderivativesrelevantto the calculationof the system
sensitivityderivatives.

Currently,oneconceptuallysimplemethodfor computingsensitivityderivatives
is the methodof "brute force" finite differencing.Here,a designvariableis perturbed
from its previousvalue, a new completesolution is obtained,and the differences
betweenthenew andold solutionsareusedto obtainthesensitivitycoefficients. This
directtechniquehasthedisadvantageof beingverycomputerintensive,especiallyif the
governingequationsareexpensiveto solveandthenumberof designvariablesis large,
andtheresultantvaluesareoftenverysensitiveto themagnitudeof the designvariable
perturbation. As a lesscostly alternative,sensitivityderivativescan, in principle, be
computedby directdifferentiationof thegoverningequations. In thecasewherethe
continuous governing equations are differentiated prior to their numerical
discretization,themethodis knownasthe"continuum"or theanalyticalapproach3. On
the otherhand,if the governingequationsaredifferentiatedafter their discretization,
themethodisknownasthe"discrete"or the"quasi2ana|yticai_approach.

Investigationsconcerningthefeasibilityof the quasi-analyticalapproachfor the
computationof the aerodynamicsensitivityderivativeshavebeenundertakenby many
researchers4,S,_;andseveralmethodshaveprovento bevery successful.However, the
differentiationof the governingdiscretizedequationsresultsin very large systemsof
algebraiclinearsensitivityequationswh!chmustbe solvedto obtain the derivatives of

interest. The application of a direct solver method to such a syste-zfi requires extensive

computer storage which for practical three dimensional problems is beyond the capacity

of modern supercomputers. Moreover, the sensitivity matrix, sparse in nature, is

generally very ill conditioned (or not diagonally dominant) and the convergence by the
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use of standard iterative techniques is very slow. To avoid these problems, it is

necessary to develop other iterative solution algorithms of the sensitivity equations.

One possibility is the incremental iterative technique 4.7 which allows tile iterative

calculation of the sensitivity derivatives using algorithms similar to those applied to the

flowfield..

The incremental iterative technique can be applied through a point semi-implicit

algorithm to solve for the flowfield, structural deflections, and their respective

sensitivities with respect to the different design variables simultaneously. However,

these results are only discipline specific. To obtain a trully optimized solution the effect

of one discipline on the other g needs to be considered. In other words, system as well

as discipline derivatives need to be determined. Consequently, a second objective of

the current work is to not only compute the coefficients needed for the system

sensitivity equations but to also investigate the number of system sensitivities needed

and methods for computing them.

THEORY

Fiowfield Model

The equations governing transonic flow are highly nonlinear and range from the

Navier-Stokes equations to the small perturbation potential equation. Since this

research is a proof-of-concept investigation, the flow modeling is the simplest possible,

e.g. the non-conservative transonic small perturbation equation:

(1- M,_2 _ (y + 1)M,_Zd_x)d_x + d_ + d_= = 0 (1.a)

where

+x= u (1.b)

v (1.c)
qbz= w (1 .d)

As shown in Fig. 1, the selected geometry is a rectangular wing with the z axis in the

spanwise direction.

Uinf

f

x

i

Fig. 1 Geometry Setup

At the wing, the boundary conditions are the

conditions for tangent flow:

inviscid surface boundary
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_Y u°lv -- (Uoo + u) ayo._ + w- (2)
ax Oz

where y_j is a function of x and z and certain design variables, such as the angle of

attack. In the wake, the Kutta condition along the wing semispan yields:

F= A(b, XTE < X <o0 (3)

while at the farfield, the boundary condition is:

_oo:O (4)

At the downstream boundary, the Tremz boundary condition can be approximated by:

At x=oo: _x=0 (5)

Further, the wing symmetry condition is expressed by:

w(z:0): 0 (6)
The finite differencing of Eq. (1), requires the use of a residual R written in

functional notation at the point i,j,k as:

_j.k--_j.d_,_._, XD) (7)
Since the structural deflections are included as the boundary conditions, and are not

treated as dependent design variables in the above equation, Eq. (7) should be

considered a discipline equation.

After taking the total differential of Eq. (7) with respect to a design variable

XD, the sensitivity equation is obtained:

dR i,_.k _ DR i.i.k ©# ii.ii._ + = 0 (8)

dXD D_ ii ./i._ DXD DXD

In this equation lies the essence of the quasi-analytical formulation in which the

discretized governing equations are differentiated. Here, +ii,jj,kk is +(x(ii), y(jj), z(kk),

XD, 6); and the system matrix 0R/c_ is sparse, or non zero at certain points only

(mostly the ones neighboring i,j,k). In this equation, the vector of deflections {6}, even

though not explicitly shown, is considered to be a vector of independent variables.

Near the boundaries, Eq. (8) has been reformulated to include the flowfield boundary

conditions. The flowfield sensitivity derivatives o_/0XD that are obtained from solving

Eq. (8) above can be used to calculate pressure sensitivities OC.p/OXD which in turn can
be used to calculate the sensitivities of the section and wing hft to the design variables.

Structural Modeling

The structural problem is modeled by representing the wing by an equivalent

flat plate with dimensions almost coincident with those of the wing. The equation

describing the plate deflections is "9

DV46-Ap=0 (9)

which assumes a thin plate and small deflections. Here, Ap is the loading due to the

difference in pressures between the upper and lower surface:

Ap = ¥p_U_oACpl 2 and ACp = C¢ - Cp. (10)
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and D, tile flexural rigidity (or equivalent bending stiffness), is given by:

Et 3
O = (11)

12 (1 - v 2 )

This model, while simple, will yield both bending and twisting effects.

The boundary conditions i0 for Eq. (9) involve both fixed and the free edges.

The root is the only fixed edge and there the boundary condition is:

At z--0 6=0 ( 12. a)

d8
=0

3z

At the tip, the boundary conditions are written:

(12.b)

d36 D38
: "--+ (2- v) - 0 (13.a)At z zm dz3 dzDx2

d26 d2_

dz 2 + v Dx 2 - 0 (13.b)

Eq. (13.a) combines the no twisting moment and no shearing force conditions at a free

edge while Eq. (13.b) states that the bending moment along the edge is zero. The other

two free edges are the leading and trailing edges, and the boundary conditions for those
are written:

d38 d36

At x = XLE ,XvE" DX:+ (2 -- V) DxDz 2 - 0 (14.a)

d26 d26

dx 2 + v Dz 2 0 (14.b)

Hence, thi'_ system of equations establishes a well defined boundary value problem that

can be solved by finite differencing.

The residual for Eq. (9) can be expressed as:

Ti,k=Ti,k(fii,kk, XD) (15)

Again, this equation is discipline specific since 8ii,kk=8(x(ii), z(kk), q_iii,t,ta, XD); and

+iii,_ is the vector of potentials on the upper and lower side of the wing that are

related to the calculation of loads. This vector is considered to be composed of

independent variables. Unlike the flowfield case, which is three dimensional, the
deflection field is a two dimensional variable.

After taking the total derivative of Eq. (15) with respect to a design variable the

structural sensitivity equation is obtained:

dT i.k _ DTi. _ . 0c5 ii._a + =

dXD D6 ii._a dXD dXD
0 (16)

6

l
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In this case, also, the system matrix is sparse. Like the flowfieid case,

take into account the appropriate conditions at the boundaries.

Eq. (16) must

Cou piing
As a result of aerodynamic loads, the equivalent plate representing the wing will

deflect; and such deflections will perturb through bending and twisting of the wing the

section angles of attack and camber line shapes. These deflections in turn will induce

different load distributions, and the two processes must be interacted until a converged

solution is obtained. This interaction is the process of aerodynamic and structural

coupling.

The coupling between the structural and the flowfield solutions is achieved

through the wing boundary conditions and is included by simply adding the structural

deflections to the ordinates of the wing. Hence, after taking the derivatives with

respect to the x and z coordinates, the boundary conditions equations are modified by:

) 83 (17.a)
Dy _._ _ Dy .._. + ._

Ox ,_x _ dx

) 86 (17.b)
Dy ,.I _ dY,._ +

Oz 8z A Oz

Note that this coupling is only carried out at the field variables level. In other words,

for a linear case (much below the critical Math number), a case in which the sensitivity

matrix 0R/0+ would not be influenced by the values of +, this aeroelastic coupling

would only slightly affect the aerodynamic and the structural sensitivity derivatives.

Thus, the coupling is said to be achieved for the sensitivity derivatives at the zero order

only.

System Sensitivity
As mentioned, for an optimization process to be accurate, it must take into

account the system sensitivity derivatives in which the coupling between the disciplines

is included. Thus, the calculation of interdisciplinary sensitivities such as the sensitivity

of the pressure distribution to the thickness of the plate or that of the tip deflections

with respect to the camber at the tip are needed. In general, the set of equations

governing the entire coupled system can be written as: 9

A((XD, 8), +)=0 (18)

S((XD, 4), iS):0 (19)

where Eq. (18) represents the aerodynamics and Eq. (19) is for the structures. For the

system analysis + can be replaced by ACp since it is the variable involved in the

aerodynamic coupling. The vectors grouped in the inner parentheses are the input,

while the vectors of unknowns (output) are listed last. The purpose of the analysis is to

find the total derivatives dY/dXD of the output vector with respect to the different
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design variables. According to the implicit functions theorem, the equations above can

be written as_°:

ac_= aC_(X_D, 8) (20)

6= 8s(XD, aC_) (2 l)

After considering Y=({ACp},{8}), taking its total derivatives with respect to XD, and

rearranging the terms, the following system equation is obtained:

I I ' slldY (22)I d
where JAS is a Jacobian of the partial "coupling" sensitivity derivatives 0ACp/&5 and

JSA is the Jacobian of c36/0ACp for selected points on the wing. For example, the i-th

column of JAS comprises the partial derivatives with respect to the i-th displacement.

The partial derivatives in the coupling matrix as well as the right hand side are, by

definition, calculated using strictly discipline derivatives. Again, the quasi-analytical

approach is Used. Equations (7) and (15) are rewritten as:

Ri._.k=Ria.._((XD, 8),qbiiai,kD (23)

Ti,k=Ti,k((XD, ACp),Sii,kk) (24)

where 8 is considered an independent variable for Eq. (23) and ACp is considered

independent for Eq. (24). This approach is valid since it iS discipline specific.

Differentiating Eq. (23) with respect to a given deflection and Eq. (24) with respect to

a given ACp on the wing yields the system of linear coupling sensitivities equations:

[ l/dR i.].t _ OR i.i.k o3_bii.ii._ + - = 0 (25)

d8 O_b ii .ii.u, c)5 06

dT i.k = OTi.k . 06 ii._ + = 0 (26)

d A C p c_5 ii ,kk _A C p _A C p

which when solved yields the coupling sensitivity derivatives, i.e. the elements of the

Jm and JsA matrices, necessary for the calculation of the system sensitivities via

Eq. (22).
= ;

DESIGN VARIABLES

:

Design variables are classified into two groups, the aerodyanmic variables

termed XDA and the structura]:yariab!es ca!led XDS. One variable (Moo) is common

to both vectors. A design variable istenned i0-be aer0dynamic or structuraldepending

in which expression of the discipline residuals it appears. For example, the angle of

attack would be an aerodynamic variable while the plate thickness, which only appears

in the deflection equation would be a structural variable. However, all the design
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variables used are basic variables in that they are uncoupled and independent. For the

current problem the vector of design variables consists of twelve variables and is given

by:
XD= (XD I,..., XD 12) (27)

These design variables can_be c!assified into three groups: _ _;_ _÷_ :

(a) Freestream design variables: These include the freestream Mach number and the

angle of attack. The Mach number enters the formulation through Eq. (1) while ot

appears in the boundary conditions in Eq. (2).

(b) Cross section design variables: These include the variables that define the airfoil.

For the present study only NACA four-digit airfoils are considered. Thus the relevant

design variables are maximum thickness, _max_imum camber, and_ !0cation of the
maximum camber, at both the root and tip. Another variable defining each spanwise

section would be the geometric twist, usually defined in terms of the relative: twist of

the wing tip to that of the root. The airfoil sections as well as the aerodynamic twist at

a given span station are obtained by linear lofting between the root and tip the values

for TH, C, and LC, each expres.sed asa fraction of the chord, i.e.:

TH = THroot+Z/Ztip (THtip- THroot) (30)

C = Croot+Z/Ztip (Cti_] Croot) (31)

LC = LCroot+Z/Ztip tLCtip- LCroot) (32)
It should be noted that this formulation ts not a point by point lofting in which the

vertical coordinate is interpolated linearly from root to tip. Nevertheless, this approach

was chosen to simplify the analytical derivations as well as the coding. The section

twist is also obtained by linear interpolation between the wing root and the wing tip:

tw = z/Ztip Ttip (33)

When taking the derivative ofy_, I with respect to x, the following is obtained:

0y ,._ "_ = Oy, 4- cgy ra ct - tw (34)0x ) ^ cgx 0x

Oy ,.,'_ = 69y¢ 4- g__Y___W___ Trp x (35)
cgz ) A Oz cgz z ,ip

With this formulation, the vector of the aerodynamic design variables can be written:

XDA = (or, THroot, THti p, Croot, Ctip, LCroot, LCtip, Ttip, Moo) (36)

(c) The structural variables: These include the parameters involved in the plate

deflection equation. Thefirst, Moo, comes from the dynamic pressure term, second is

the thickness of the plate t, followed by Poisson's ratio v, and Young's modulus of"

elasticity E. In the present study, the dynamic pressure is calculated using the sea level

conditions. Thus, the vector of structural design variables is:

XDS=(M_, t, v, E) (37)

These two vectors are combined to form a single vector of design variables:

XD = (or, THroot, THtip, Croot, Ctip, LCroot, LCtip, Ttip, Moo, t, v, E) (38)
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DISCRETIZATION APPROACH AND NUMERICAL PROCEDURE

Aerodynamic Analysis

As previously stated, the aerodynamic analysis is based on the transonic small

perturbation potential formulation in Eq. (l), formulated using a Cartesian grid and a

finite computational domain. Hence, the transformation utilized maps the infinite

physical domain into a finite computational grid.

In the present formulation, the infinite physical plane is transformed via tangent

functions into the finite computational space shown in Fig. 2. Thus, the i=l, i=IM, j=l,

j=JM, and k=KM planes physically correspond to infinity and k=l is the wing symetry

plane. Further, the wing is located between two grid lines, YI3 and J-B-1.

= :

w

w
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•z_ _-

w

<

_r

k=KM

¢/ /

JB +l___J_=..'_'__.

}B -1 .......... l4¢
Ii

I

j=l ,,
i=IM

_--o.s

,. f
+l rL '/ k /

---77"- -i . ,.
Y

, /

-1 1 / Ktip
/ I

i=l
_ = -0.s

Fig. 2 Computational and Physical Domains

J
Uinf

Since there is a potential jump across the trailing edge cut, which extends to

downstream infinity, and since the jump depends upon the trailing edge potentials, the

sensitivity matrix, ¢)R/0_b, while banded, contains elements far from the central band.

Consequently, the rapid and efficient solution of the sensitivity equation by direct

methods is difficult. However , the sensitivity equation can be solved by the same

iterative method as the flowfield, by the introduction of a new residual Ski,k
corresponding to Eq. (8).

For the sensitivity portion of this analysis, the residual expressions, Ri,j,k, are

differentiated analytically with respect to the flowfield variable _. Similarly, the right

hand side of the sensitivity equations is determined by analytical differentiation of the

residuals with respect to each design Variablel Unfortunately, the size of the sensitivity
matrix is tremendous for fine grids and storing such a matrix is beyond the capability of

many computers. In the present study, the storage problem is solved by the use of a

more efficient solver, namely the incremental iterative technique. The additional

m

==h_

l0



availablememoryspaceallows the use of finer grids and the inclusion of other
disciplinesaswell.

Once the potentialsare obtained, the Cv's are obtained through the small
perturbationrelation:

Cp= -2qb (62)
whichrequirestheextrapolation(first order)of theO0 values above and below the plane

of the wing. The section lift coefficient is then computed directly from the circulation

around every airfoil section:

C, = 2F_ = 2(0O_rE.m.t - q_n_.ra-_.k) (63)

which gives faster and more accurate results than those obtained by integration of the

Cp's difference between the lower and upper surfaces. The wing lift coefficient C L is
calculated by integration over the span. The corresponding sensitivity derivatives are

then determined from:

0C, ) 0F kk = 2 0XD (64)

and 0C_/0XD can be calculated by numerical integration of the above coefficient along

the span.

Structural Analysis

Since Eq. (9) is a fourth order partial differential equation, its solution can be

significantly simplified by splitting it into two equations to be solved simultaneously: _

V2 u Ap _ 0 (65)
D

V 28 - u = 0 (66)

In non-dimensional form, Eq. (65) is:

V zu-kAC = 0 (67)

wllere

and
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t 3

6 1 P _ (69)
k o -

E0

After splitting the governing equations, the next step should be to split the eight

boundary conditions written in Eqs. (12)-(14) into four for the u's and four for the

deflections. However, this splitting must be carried out so that the solution scheme

does not become unstable. When applying the Laplacian operator to Eq. (12.b) one

obtains:
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At z=0: - 0 (70)
0z

For the free edges, the situation is more complicated. The first step would be to take,

the partial derivative of u in the z direction. When combining the result of this

differentiation with Eq. (13.a) the appropriate boundary condition becomes:

Ou Os8

At z=z_ir,: 0z (v- 1) 0z0x 2 (71)

When finite differenced, this formulation is accurate and has better stability

characteristics than the formulation with the third order partial derivative with respect

to z. Similarly, at the leading and trailing edges of the plate the boundary condition for

u can be expressed:

0u 038

At X=XLE, XTF," 0 X -- ( V -- 1 ) 0 X 0 Z _ (72)

Since the flowfield solver uses a finite differencing technique with a given grid

the same technique and the same grid are used to obtain the structural deflections,

which simplifies the aerodynamic structural coupling. Hence, both the flowfield and

structural solutions can be: calculated with!n the same loops, which is computationally
efficient. Consequently, the structural part uses the same grid metrics. Further, the

field variable u is first obtained and then used as an input to solve for the deflection at

the same point, thus enhancing convergence and stability.

The boundary conditions stated in Eqs. (12)-(14) should be applied at the exact

boundaries of the wing which do not coincide with an exact grid point in the

computational domain because the leading, trailing, and wing tip edges are located

between grid lines. Hence, a Taylor series development should be used at all the

boundaries except the root, where the boundary coincides with a gridline. This

development would involve higher order partial derivatives which when finite

differenced would yield extremely complicated expressions. To avoid that problem, the

size of the equivalent plate and the grid were chosen such that the free edge boundaries

of the equivalent plate are very close but not coincident to the wing leading, trailing,

and tip edges. The boundary conditions corresponding to Eq. (71) and (72) can cause

numerical divergence and a possible solution is to simplify them so that numerical

stability can be created. Fortunately, the variable u, physically corresponds to the

second derivative in one direction at a given edge. For example, at the wing tip, if it is

assumed that the loading along the wing is only a distributed loading without

concentrated loads or moments to cause discontinuities in the curvature of the plate,

the assumption that the second partial derivative with respect to z is constant is

acceptable. Similarly, at the tip, the "curvature in the x-direction" or the second partial

with respect to x will also be constant in the absence of concentrated loads and

moments. Henc.e, the approximation that u is constant along a free tip is reasonable.

In addition, this condition does not have a destabilizing influence on the algorithm

Hence, the partials with respect to z and x respectively for Eq. (71) and (72) are

12



assumed to be equal to zero. Also, the boundary conditions for the structural

deflections equation (Equ. 66), stated in Equ. (12.a), (13.b), and (14.b), are finite

differenced and incorporated in the corresponding residual expressions.

The second part of the structural analysis is the structural sensitivity analysis

with respect to the four components of XDS, the vector of structural design variables.

The approach used is the same as the one used for the deflections. In other words, the

sensitivity equation is also divided into two components. Hence, when applying tile

quasi-analytical approach to Eq. (75) and (78) the following equations are obtained:

STU i.k =
aTU i.k au ii .kk +

a u i_._, 69XDS c9XDS

0Ti._ _ ii.ti + . =

ST i.k = o_ ii ._ 0 XDS G7 KIDS

= o (88)

o (89)

Here, it should be noted that 0Ti'k is 67-_) ..: :which shows that, as in the
c_XDS ....

deflection field solution, the output variable of the system of Eq. (88)-is used as an

input to Eq. (89). At the boundaries, Eqs. (88) and (89) must take into account the

appropriate structural boundary conditions.

Aeroelastic Coupling and System Sensitivity Analyses .

Aerodynamic-structural coupling can be carried out at two levels;-defined here

to be zero and first order. The zero order coupling corresponds to an updating of the

aerodynamic boundary conditions each ti_me_._after the structural deflections are
calculated and vice versa. However, sensitivities are Computed'as discipline

sensitivities and do not directly include the complete effects of aerodynamic-structural

coupling. On the other hand, the first order coupling is definedt0mea_that the effect

of the structure on the flowfield and vice versa is taken into account not only at the

flowfield-deflection level but also at the sensitivity level. For example, for the zero

order coupling the structural deflections affect the aerodynamic sensitivity derivatives

through the spanwise flow component _z in 0R/0XI)A while the first order coupling

also affects that expression through a coupling term c3_bz/c33. This term is called a

coupling sensitivity. In this second case, the deflections are not considergd cQnstant in

the aerodynamic residual expressions (Eq. 18), as in the discipline specific analysis, and

are considered as design variables. Likewise, in first order coupling, the potentials

related to the Cp calculation along the wing are treated as design variables for Eq. (19).
The terms that affect coupling the most are those that appear directly in the

residuals expressions. These are the deflections, since they enter directly in the

expression of the boundary conditions for the aerodynamic residuals, and the loads

ACp, which appear in the expressions of the structural residuals. However, as shown in
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Eq. (22), the coupling derivatives, OACp/05 and 06/0ACp, are tile essential components

of the system sensitivity matrix and are used to obtain the system sensitivity derivatives.

The equations for determining those coupling derivatives are presented in Eq. (25) and

(26). However, frequently not all tile deflections or loads can be used in the system

matrix since such inclusions would often require extensive memory storage and CPU

times that are unrealistic. Hence, the choice of which loads and deflections to include

in the system sensitivity equation is subject to judgment and experimentation.

However, the more coupling variables are included, the more accurate the system

sensitivity derivatives should be.

| !

[ i
E5i

= =

u

E ]
D_

imm

W

Numerical Approach

The sensitivity matrix, associated with the linear sensitivity equations, as well as

the matrix resulting from the finite differencing of the flowfield and structural solutions,

are generally very sparse and ill conditioned, or not diagonally dominant. Thus, the

solution of the corresponding linear equations by standard direct solvers is memory

inefficient and iterative methods should be considered. 6,_,8 In addition, since the non-

linear flowfield equations must be solved iteratively, the use of a similar iterative

scheme to obtain the sensitivities would seem to be appropriate.

A possible scheme is the incremental iterative technique,4, 8 which has shown to

have better convergence characteristics in many cases than the standard iterative

techniques. This method comes from a formulation in which a system of algebraic

equations has the general form: g

[A]{Z'} + {B} : {0} (90)

where {Z'}, the solution vector, is obtained by the two step formulation:

• ,.. -[x][A°z} --{A]{Z°}+{B} (91)
(z o+') = (z°} + (A°z}

Here, n is the iteration index and [,J]] is a convenient approximation of[)], generally

chosen to enhance the diagonal dominance and, thus, the convergence characteristics of

the system.

The above formulation, when applied to sensitivity equations, still requires the

storage of a relatively large sensitivity matrix. However, the use of a point algorithm to

obtain the increments avoids that problem since it only requires the elements of the

matrix relevant to the calculation of the increment at point i,j,k. Obviously, such an

approach has the possible disadvantage of slower convergence. Nevertheless, since the

sensitivity equations are linear, their convergence should be faster than that of the

nonlinear flowfield. Unfortunately, the structural equations tend to behave like the

nonlinear flowfieid equations in terms of convergence.

An example of such a point algorithm is the semi-implicit ZEBRA schemO 2

which mimics point successive over relaxation (SOR). The algorithm marches in the

14
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streamwise (I) direction solving by spanwise planes. In each plane, the points where

j+k are odd are denoted black and the ones where j+k are even are denoted white (Fig.

3). Each plane is solved by a two-pass sweep in which new black values are obtained

first, followed by the white ones. Convergence is thus accelerated because calculations

at the white points use updated values at the black points. Because of its uncoupled

formulation, this method is suitable for sequential, vector, and parallel machines.

mm
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Fig. 3 Point Dependence Illustration
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In the ZEBRA algorithm, because of the point semi-implicitness, the matrix [A]

is reduced to a scalar B. Hence, the incremental changes in the unknowns can be found

in the following form for the aerodynamic potential, for example:

Ri jk
Adpi.j.k = ...... + DMP (93)

B

where DMP is a damping term added for transonic stability. The same type of formulas

can also be used to calculate the increments for the aerodynamic sensitivity field

variables, structural deflections, structural sensitivity derivatives and coupling

derivatives field variables 16. The algorithm used is schematically described in the

following figure. :
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• Use results to update aerodynamic and structural boundary

•Iterate until convergence

,,Solve System Sensitivity Equations for dACp and d5
dXD dXD

Fig. 4 Integrated Solution Approach

conditions

RESULTS AND DISCUSSION

Case Studied

The wing configuration considered in this study has a rectangular planform of

constant unit chord. The geometric and structural design parameters describing the

wing as well as the nominal freestream conditions are listed in Table 1. It should be

noted that the root and tip airfoil sections are NACA 2406 and NACA 1706

respectively.

7
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Table 1 Wing Data

Aspect Ratio

o[

Zlip

c

Trip

THr_,t

THtip

l'o_l

Ctip

LCfool

LCliv

E

v

3.17

2.0 °

1.58

1.0

-1.0 °

0.06

0.06

0.02

0.01

0.4

0.7

0.82

1.0

0.33

L

The case presented here used a grid of 97 x 16 x 16 for the flowfield and 49 x

10 for the structural deflections. The freestream Mach number=is supercrlticai and a

shock wave is present on the inboard sections of the upper surface of the wing.

However, the shock wave disappears on the outboard sections due to three dimensional

effects. Thus, this Mach number is interesting because it locally includes both the

subcritical and supercritical behavior of the flowfield and the corresponding

sensitivities. In all cases, to speed up convergence, a coarse-medium-fine grid

sequence halving in the x-direction was used in computing the analysis information.

Results were computed for equivalent plate thicknesses of five and two percent but

only the two percent results were shown in this paper. It should be noted that a one

percent thick case, while attempted, turned out to be aeroelastically divergent. For the

coupling variables-nee(ted to determine the system sensitivities, five of the ten spanwise

stations were selected each involving twenty five of the forty-nine possible points. It is

believed, since-it isnumerically difficult to include every point usedln =t_efin_grid_ that

the deflections and loads selected for the coupling system coefficients in the sensitivites

will be representative. However, this choice is under investigation and will be further

discussed in the final paper.

Fig. 5 shows the pressure distribution at six of the ten spanwise stations. The

upper surface shows a shock wave at approximately the x=0.5 location in the sections

near the root. The airfoil section, being non-constant from root to tip, is also drawn on

the same diagram and the angle of attack as well as the geometric twist are taken into

account when plotting the geometry. The final deflected shape off the airfoil due to

aeroelastic coupling is drawn in dashed lines but not to scale. The critical pressure

coefficient level Cp, is also shown and comparison of C 0" with the pressures shows
that the shock wave weakens progressively when approaching the tip, which is
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obviously subcritical. At the tip, the pressure distribution is typical of a subcritical aft

cambered NACA section. One should note that due to the change in airfoil sections

from root to tip the wing has some inherent aerodynamic twist. However, unlike tlre

thick plate casO 6, the lower surface Cp curve at the tip section, goes above the upper

one causing the aerodynamic load at the leading edge to be negative.

The results for the discipline sensitivity derivatives are shown in Fig. 6-14 and

Fig. 16-19 while the ones for the system sensitivity derivatives are shown in Fig. 20

through 31. Pertinent portions will be selected and discussed in detail in the final

paper.

Fig. 15 shows the structural deflections at different span stations. Notice that

if a line is drawn from the leading to the trailing edge of the plate at each section, this

line would form an "angle of attack" with the x-axis which would be an induced twist

due to structural deflections. Further, even though the amplitudes are extremely small,

bending exists in the sections toward the wing tip. This "cambering" effect due to

chordwise bending is more pronounced as the tip is approached. In fact, the chordwise

section of the equivalent plate near the tip looks as a camber line that could cause an

increase in lift and could become a dominating component of the tip aerodynamics.

Further, the maximum of the structurally induced camber is a little bit aft of center.

Note that the spanwise edge of the equivalent plate is loaded due to the ACp there,

even though no concentrated loads or bending moments exist at the edges of the

equivalent plate. If the spanwise edge of the equivalent plate actually corresponded to

the wing tip, it would not be loaded and the cambering effect would be attenuated at

the tip. Again, pertinent features of the structural sensitivity derivatives shown on

Figs. 16-19 will be discussed in the final paper.

For clarity and length reasons, the system sensitivity derivatives plots are only

shown for three stations, in Fig. 20 to 31. For the sensitivity of the loads with respect

to the design variables the system and discipline curves almost agreed. However, a

discrepancy was noticed at the leading and trailing edge locations for the sensitivity of

the loads. Moreover, when compared to a case where thirteen stations chordwise were

chosen for eight spanwise stations differences were found for the structural system

sensitivities with respect to the aerodynamic design variables and for the loads system

sensitivities with respect to the structural design variables. This difference is currently

under study and will be discussed in the final paper. However, in all cases the system

structural sensitivities, d6/dXD, ot_en differed in magnitude and, more importantly in

sign from the discipline sensitivity derivatives, 0¢S/0XD. The origins and significance of

this behavior will be discussed in the final paper.
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The system sensitivity analysis shows that the deflections at the tip as well as

the loads are going to decrease with an increase in oc Likewise, an increase in the

values of THroo,, THtip, Croot , Grip, LCroot , LCtip, Trip, and M_ will cause an unloading of

the tip associated with a decrease in the deflections. Further, the structural variables t,

v, and E will cause an increase in the tip loading as well as the associated deflections.

The structurally induced camber is essential to the interpretation of these a priori

unexpected results.

CONCLUSION

Based on the results presented, the use of the incremental-iterative technique

through the semi-implicit ZEBRA scheme to .calculate the sensitivity derivatives

obtained from the quasi-analytical formulation has proven to be successful and very

computationally efficient. A large memory space for the storage of the sensitivity

matrix is not needed anymore and the sensitivity derivatives can be calculated at the

same time as the flowfidd instead of using a converged flowfield solution as an input to

a sparse matrix solver. 6

The saved computational resources can thus be used for finer grids, more

design variables, and additional disciplines. Hence, a coupling of the aerodynamic

solver with a structural one and its sensitivities has been undertaken. This static

aeroelastic coupling is very efficient since the structural calculation and resultant

structural sensitivities and coupling sensitivities are computed at the same time as the

flowfield. In addition, the use of finite differencing to solve for the structural

deflections improves the efficiency of the scheme since no grid transformation is

necessary.

Because the system is muitidisciplinary, the calculation of the system sensitivity

derivatives takes into account the influence of one discipline on--:the other. This

calculation relies on the "coupling" sensitivity derivatives that are not very easy to

obtain computationally since their respective convergence (especially for the deflection

with respect to load sensitivity) is slow. Results for the system sensitivities will be

discussed in the final paper.
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